Name:	Section:
Clear your desk of everything except pens, pencils and erasers.	Show all your work.

If you have a question raise your hand and I will come to you.

1. Solve equation $\frac{dy}{dx} = xe^{-y}$ (total 3 points). Answer: $y = \ln(\frac{1}{2}x^2 + C)$ (2 points for $e^y = \frac{1}{2}x^2 + C$; and 1 point for the correct final step.)

2. Evaluate $\int_{e}^{e^2} \frac{dx}{x(\log_{10} x)^2}$ (total 4 points). Answer: $\frac{1}{2}(\ln 10)^2$ (2 points for $(\ln 10)^2 \int_{1}^{2} (\ln x)^{-2} d\ln x$; 2 points for the correct final result)

3. The physical law for the radioctive decay of C^{14} mass (y) over time (t) is given by

$$\frac{dy}{dt} = -ky$$

where k > 0 is a constant. The initial C¹⁴ mass is y_0 and half-life of C¹⁴ mass is 5700 years. What is the the age of a sample in which 40% of the original C¹⁴ mass has decayed (total 3 point)? Answer: $t = -\frac{5700}{\ln 2} \ln 0.6$ (1 point for $y = y_0 e^{-kt}$; 2 points for the correct final result)