Exercise 8.5

(a) The Kolmogorov forward equations are

$$
\begin{aligned}
& \frac{d}{d t} t_{t}^{00}={ }_{t} p_{x}^{01} \mu_{x+t}^{10}-{ }_{t} p_{x}^{00}\left(\mu_{x+t}^{01}+\mu_{x+t}^{02}\right) \\
& \frac{d}{d t} t_{p}^{01}={ }_{t} p_{x}^{00} \mu_{x+t}^{01}-{ }_{t} p_{x}^{01}\left(\mu_{x+t}^{10}+\mu_{x+t}^{12}\right) \\
& \frac{d}{d t}{ }_{t} p_{x}^{02}={ }_{t} p_{x}^{00} \mu_{x+t}^{02}+{ }_{t} p_{x}^{01} \mu_{x+t}^{12}
\end{aligned}
$$

(b) $\bar{a}_{x: \bar{n}}^{01}$ is the actuarial present value of a benefit of 1 per year, payable continuously to a healthy life now age x, while in state 1 (sick) within n years. It can be expressed as

$$
\bar{a}_{x: \bar{n}}^{01}=\int_{0}^{n} v^{t}{ }_{t} p_{x}^{01} d t .
$$

$\bar{A}_{x: \bar{n}}^{02}$ is the actuarial present value of a death benefit of 1 payable to a healthy life now age x at the moment of his/her death, provided this occurs before n years. It can be expressed as

$$
\bar{A}_{x: \bar{n}}^{02}=\int_{0}^{n} v^{t}\left({ }_{t} p_{x}^{01} \mu_{x+t}^{02}+{ }_{t} p_{x}^{01} \mu_{x+t}^{12}\right) d t
$$

(c) The reserve at time t for a policy in state 1 is

$$
\begin{aligned}
{ }_{t} V^{(1)} & =\mathrm{APV}(\mathrm{FDB})_{t}+\mathrm{APV}(\mathrm{FSB})_{t}-\mathrm{APV}(\mathrm{FP})_{t} \\
& =B \bar{a}_{40+t: \overline{20-t}}^{11}+S \bar{A}_{40+t: \overline{20-t}}^{12}-P \bar{a}_{40+t: \overline{20-t}}^{10}
\end{aligned}
$$

where $\mathrm{APV}=$ actuarial present value, $\mathrm{FDB}=$ future death benefit, $\mathrm{FSB}=$ future sickness benefit, $\mathrm{FP}=$ future premiums.
(d) The numerical approximations to use are:

$$
\begin{aligned}
& t+h p_{40}^{00} \approx{ }_{t} p_{40}^{00}+h\left[{ }_{t} p_{40}^{01} \mu_{40+t}^{10}-{ }_{t}{ }_{t}^{00}\left(\mu_{40+t}^{01}+\mu_{40+t}^{02}\right)\right] \\
& t+h p_{40}^{01} \approx{ }_{t} p_{40}^{01}+h\left[{ }_{t} p_{40}^{00} \mu_{40+t}^{01}-{ }_{t} p_{40}^{01}\left(\mu_{40+t}^{10}+\mu_{40+t}^{12}\right)\right]
\end{aligned}
$$

with initial conditions ${ }_{0} p_{40}^{00}=1,{ }_{0} p_{40}^{01}=0$.
(i) With $h=0.1$ and starting at $t=0$, we get

$$
\begin{aligned}
& { }_{0.1} p_{40}^{00} \approx 1+0.1[0-(0.01074+0.00328)]=0.998598 \\
& { }_{0.1} 1_{40}^{01} \approx 0+0.1(1 \times 0.01071)=0.001074
\end{aligned}
$$

Doing another round of iteration, next starting with $t=0.1$, we have

$$
\begin{gathered}
{ }_{0.2} p_{40}^{00} \approx{ }_{0.1} p_{40}^{00}+0.1\left[{ }_{0.1} p_{40}^{01}(0.09003)-{ }_{0.1} p_{40}^{00}(0.01094+0.00330)\right]=0.9971857 \\
{ }_{0.2} p_{40}^{01} \approx{ }_{0.1} p_{40}^{01}+0.1\left[{ }_{0.1} p_{40}^{00}(0.01094)-{ }_{0.1} p_{40}^{01}(0.09003+0.00719)\right]=0.002156025
\end{gathered}
$$

(ii) The Thiele's differential equations for the policy reserves satisfy

$$
\frac{d}{d t} V_{t}^{(0)}=\delta_{t} V^{(0)}+P-\mu_{x+t}^{02}\left(S-{ }_{t} V^{(0)}\right)-\mu_{x+t}^{01}\left({ }_{t} V^{(1)}-{ }_{t} V^{(0)}\right)
$$

and

$$
\frac{d}{d t} V_{t}^{(1)}=\delta_{t} V^{(0)}-B-\mu_{x+t}^{12}\left(S-{ }_{t} V^{(1)}\right)-\mu_{x+t}^{10}\left({ }_{t} V^{(0)}-{ }_{t} V^{(1)}\right)
$$

(iii) Using the backward Euler's method: $\frac{d}{d t} V_{t}^{(j)} \approx \frac{1}{h}\left({ }_{t} V^{(j)}-{ }_{t-h} V^{(j)}\right)$ and the conditions that ${ }_{20} V^{(0)}={ }_{20} V^{(1)}=0$, with $h=0.1$ we get

$$
{ }_{19.9} V^{(0)}=-0.1\left(P-S \mu_{60}^{02}\right)=-0.1(6000-100000 * 0.01730)=-427
$$

and

$$
{ }_{19.9} V^{(1)}=-0.1\left(-B-S \mu_{60}^{12}\right)=-0.1(-20000-100000 * 0.05941)=2,594.10
$$

