1. You are given:

 - Mortality follows the Illustrative Life Table.
 - All lives are independent.
 - Deaths are uniformly distributed over each year of age.

 Evaluate \(q_{50:55:60} \)

2. For a fully discrete whole life insurance of $1 issued to (40), you are given:

 - \(P \) is the annual benefit premium determined according to the equivalence principle.
 - \(P^* \) is the smallest possible annual benefit premium to ensure that the probability of a positive loss-at-issue is less than 0.50.

 You are given:

 - Mortality follows the Illustrative Life Table.
 - \(i = 6\% \)

 Calculate \(\frac{P}{P^*} \).

3. For a special whole life insurance on (45), you are given:

 - Benefit is paid at the end of the year of death. The death benefit is $100,000 for the first 20 years and reduces to $50,000 thereafter.
 - The annual benefit premium of $4,945 is payable once at the beginning of each year for the first 20 years only; no premiums are payable after 20 years.
 - The following actuarial present values:

 \[
 \begin{array}{cccc}
 x & A_x & \bar{a}_x & 10E_x \\
 \hline
 55 & 0.5628 & 4.8091 & 0.0758 \\
 65 & 0.7532 & 2.7147 & 0.0015 \\
 \end{array}
 \]

 Calculate the benefit reserve at the end of 10 years.

4. For a double decrement table, you are given:

 - \(q_x^{(1)} = 0.1 \)
 - \(q_x^{(2)} = 0.2 \)
• Each decrement is uniformly distributed over each year of age in its associated single decrement table.

Calculate $q_x^{(1)}$.

5. Patients are classified as Sick (S), Critical (C), or Discharged (D). Transition occur according to the following transition matrix:

$$
\begin{pmatrix}
S & C & D \\
S & 0 & 0.20 & 0.20 \\
C & 0.10 & 0.50 & 0.40 \\
D & 0.00 & 0.00 & 1.00 \\
\end{pmatrix}
$$

Calculate the probability that a patient who is classified as Sick today will be classified as Sick three days later.

6. An insurance company uses the following “accidental death” model:

For a special whole life insurance policy issued to a life (x), you are given:

• A benefit of $4 is payable at the moment of death of (x) if death is due to acidental causes; otherwise, the benefit is only $1.

• Transition intensities are

$$
\mu_{x+t}^{01} = 0.005 \text{ and } \mu_{x+t}^{02} = 0.010, \text{ for all } t > 0.
$$

• $\delta = 4\%$

Calculate the actuarial present value of the benefits provided by this policy.

7. For a Universal Life policy issued to (50) with death benefit equal to $10,000 plus the account value, you are given:

• Premiums are deposited at the start of each year.
- The expense charge in each year is 2.5% of premium. There are no other expense charges.
- The cost of insurance rate each year is equal to 150% of the applicable mortality rate at the attained age.
- $i^e = i^q = 5\%$ for all years
- The account value at the end of 5 years is $11,196.12$.
- $q_{55} = 0.002$
- The corridor factor requirement is a minimum of 1.5 each year.

Calculate the largest amount of premium this policyholder can pay at the beginning of the sixth year.

8. For a Type A universal life policy issued to (50), you are given:

- The face amount is 100,000.
- All cash flows occur at policy anniversaries.
- The policyholder pays an initial premium of 15,000.
- The cost of insurance (COI) is calculated based on 120% of the mortality in the Illustrative Life Table. The interest rate for discounting the net amount at risk, i^q, is 0.04.
- The expense charge is 1% of premium.
- The credited interest rate for policy year 1 is 5%.
- The corridor factor in year 1 is 2.2.
- The surrender charge in policy year 1 is 5% of the premium paid.

(a) Calculate the COI in policy year 1 assuming there is no corridor factor requirement.
(b) Calculate the COI in policy year 1 based only on the corridor factor (as if the face amount were 0).
(c) Determine the COI in policy year 1.

9. For a Type B universal life policy of 200,000 issued to (55):

- A premium of 5000 is paid at the start of the ninth year.
- Expense charges are 35% of first year premiums and 10% of renewal premiums.
- The cost of insurance in the ninth year is based on $q_{63} = 0.01$. Death benefits are assumed to be paid at the end of the year.
- The account values at the beginning and end of the ninth year are 45,000 and 49,480, respectively.
- The interest rate used to discount the COI is equal to the interest credited, i^e, during the ninth year.
Calculate \(i^c \).

10. For two universal life policies issued to (60): Policy 1 is a Type A universal life with death benefit of 100,000 while Policy 2 is a Type B universal life with death benefit of 100,000. For each policy:

- Death benefits are paid at the end of the month of death.
- Account values are calculated monthly.
- Level monthly premiums of \(G \) are payable at the beginning of each month. Past premiums may have been different from \(G \), and may not have been the same for both policies.
- Mortality rates for calculating COI follows the Illustrative Life Table, with the UDD assumption for fractional ages.
- Interest is credited at a monthly effective rate of 0.004.
- The interest rate used for accumulating and discounting in the COI calculation is a monthly effective rate of 0.004.
- Level expense charges of \(E \) are deducted at the beginning of each month.

At the end of the 36th month, the account value for Policy 1 equals the account value for Policy 2.
Calculate the ratio of the account value for Policy 1 at the end of the 37th month to the account value of Policy 2 at the end of the 37th month.

11. For a universal life policy with a death benefit of 10,000 plus the account value on (60), you are given:

- The following table of values:

<table>
<thead>
<tr>
<th>Month</th>
<th>Monthly Premium</th>
<th>Percent of Premium Charge</th>
<th>Monthly Cost of Insurance Rate per 1000</th>
<th>Monthly Expense Charges</th>
<th>Surrender Charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>100</td>
<td>15%</td>
<td>3.00</td>
<td>10</td>
<td>400</td>
</tr>
</tbody>
</table>

- The credited interest rate is \(i^{(12)} = 0.048 \).
- The account value at the end of month 11 is 1500.

The policy is surrendered at the end of month 12. The cash surrender value is used as a single premium to purchase a whole life annuity-due whose first 10 annual payments are guaranteed. For this annuity, you are given:

- Mortality follows the Illustrative Life Table.
- \(i = 0.06 \)
- The annuity is priced using the equivalence principle.

Calculate the amount of the annual annuity payment.