A revisit of the hierarchical insurance claims modeling

Emiliano A. Valdez Michigan State University

joint work with E.W. Frees*

* University of Wisconsin – Madison

Statistical Society of Canada (SSC) 2014 Annual Meeting Toronto, ON Canada 25-28 May 2014

E.A. Valdez (Mich State Univ)

Introduction

A collection of work

- Frees and Valdez (2008), Hierarchical Insurance Claims Modeling, *Journal of the American Statistical Association*, Vol. 103, No. 484, pp. 1457-1469.
- Frees, Shi and Valdez (2009), Actuarial Applications of a Hierarchical Insurance Claims Model, *ASTIN Bulletin*, Vol. 39, No. 1, pp. 165-197.
- Young, Valdez and Kohn (2009), Multivariate Probit Models for Conditional Claim Types, *Insurance: Mathematics and Economics*, Vol. 44, No. 2, pp. 214-228.

Introduction

Basic data set-up

- "Policyholder" i is followed over time $t = 1, \ldots, 9$ years
- Unit of analysis "it" a registered vehicle insured i over time t (year)
- Have available: exposure e_{it} and covariates (explanatory variables) \mathbf{x}_{it}
 - covariates often include age, gender, vehicle type, driving history and so forth
- Goal: understand how time t and covariates impact claims C_{it} .
- Statistical methods viewpoint
 - basic regression set-up almost every analyst is familiar with:
 - part of the basic actuarial education curriculum
 - incorporating cross-sectional and time patterns is the subject of longitudinal data analysis a widely available statistical methodology

More complex data set-up

- Some variations that might be encountered when examining insurance company records
- For each "it", could have multiple claims, $j=0,1,\ldots,5$
- For each claim C_{itj} , possible to have one or a combination of three (3) types of losses:
 - $\textbf{0} \text{ losses for injury to a party other than the insured } C_{itj,1} \text{ "injury"};$
 - ② losses for damages to the insured, including injury, property damage, fire and theft $C_{itj,2}$ "own damage"; and
 - $\textcircled{\sc 0}$ losses for property damage to a party other than the insured $C_{itj,3}$ "third party property".
- Distribution for each claim is typically medium to long-tail
- The full multivariate claim may not be observed. For example:

Distribution of claims, by claim type observed								
Value of M	1	2	3	4	5	6	7	Total
Claim by Combination	(C_1)	(C_2)	(C_3)	(C_1, C_2)	(C_1, C_3)	(C_2, C_3)	(C_1, C_2, C_3)	
Number	102	17,216	2,899	68	18	3,176	43	23,522
Percentage	0.4	73.2	12.3	0.3	0.1	13.5	0.2	100.0

E.A. Valdez (Mich State Univ)

Introduction

The hierarchical insurance claims model

• Traditional to predict/estimate insurance claims distributions:

Cost of Claims = Frequency \times Severity

• Joint density of the aggregate loss can be decomposed as:

• This natural decomposition allows us to investigate/model each component separately.

E.A. Valdez (Mich State Univ)

Introduction

Model features

- Allows for risk rating factors to be used as explanatory variables that predict both the frequency and the multivariate severity components.
- Helps capture the long-tail nature of the claims distribution through the GB2 distribution model.
- Provides for a "two-part" distribution of losses when a claim occurs, not necessary that all possible types of losses are realized.
- Allows to capture possible dependencies of claims among the various types through a *t*-copula specification.

Data

- Model is calibrated with detailed, micro-level automobile insurance records over nine years [1993 to 2001] of a randomly selected Singapore insurer.
- Information was extracted from the policy and claims files.
- Unit of analysis a registered vehicle insured i over time t (year).
- The observable data consist of
 - number of claims within a year: N_{it} , for $t = 1, \ldots, T_i, i = 1, \ldots, n$
 - type of claim: M_{itj} for claim $j = 1, \ldots, N_{it}$
 - the loss amount: C_{itjk} for type k = 1, 2, 3
 - known deductible: d_{it} applicable only for "own damages"
 - exposure: e_{it}
 - $\bullet\,$ vehicle characteristics: described by the vector \mathbf{x}_{it}
- The data available therefore consist of

$$\{d_{it}, e_{it}, \mathbf{x}_{it}, N_{it}, M_{itj}, C_{itjk}\}.$$

Risk factor rating system

- Insurers adopt "risk factor rating system" in establishing premiums for motor insurance.
- Some risk factors considered:
 - vehicle characteristics: make/brand/model, engine capacity, year of make (or age of vehicle), price/value
 - driver characteristics: age, sex, occupation, driving experience, claim history
 - other characteristics: what to be used for (private, corporate, commercial, hire), type of coverage
- The "no claims discount" (NCD) system:
 - rewards for safe driving
 - discount upon renewal of policy ranging from 0 to 50%, depending on the number of years of zero claims.
- These risk factors/characteristics help explain the heterogeneity among the individual policyholders.

5

E.A. Valdez (Mich State Univ)

Covariates

- Year: the calendar year 1993-2000; treated as continuous variable.
- Vehicle Type: automobile (A) or others (O).
- Vehicle Age: in years, grouped into 6 categories -
 - 0, 1-2, 3-5, 6-10, 11-15, ≥16.
- Vehicle Capacity: in cubic capacity.
- Gender: male (M) or female (F).
- Age: in years, grouped into 7 categories -
 - ages \geq 21, 22-25, 26-35, 36-45, 46-55, 56-65, \leq 66.
- The NCD applicable for the calendar year 0%, 10%, 20%, 30%, 40%, and 50%.

Random effects negative binomial count model

- Let $\lambda_{it} = e_{it} \exp (\alpha_{\lambda i} + \mathbf{x}'_{it}\beta_{\lambda})$ be the conditional mean parameter for the $\{it\}$ observational unit, where $\alpha_{\lambda i}$ is a time-constant latent random variable for heterogeneity.
- With $\lambda_i=(\lambda_{i1},...,\lambda_{iT_i})'$, the frequency component likelihood for the i-th subject is

$$L_{i} = \int \Pr\left(N_{i1} = n_{i1}, ..., N_{iT_{i}} = n_{iT_{i}} | \lambda_{i}\right) f\left(\alpha_{\lambda i}\right) d\alpha_{\lambda i}$$

- Typically one uses a normal distribution for $f(\alpha_{\lambda i})$.
- The conditional joint distribution for all observations from the *i*-th subject is

$$\Pr(N_{i1} = n_{i1}, ..., N_{iT_i} = n_{iT_i} | \lambda_i) = \prod_{t=1}^{T_i} \Pr(N_{it} = n_{it} | \lambda_{it}).$$

E.A. Valdez (Mich State Univ)

SSC 2014 Annual Meeting

25-28 May 2014 10 / 27

Negative binomial distribution model with parameters p and r:

•
$$\Pr(N = k | r, p) = \binom{k + r - 1}{r - 1} p^r (1 - p)^k.$$

- Here, $\sigma = \frac{1}{r}$ is the dispersion parameter and
- $p = p_{it}$ is related to the mean through

$$\frac{1-p_{it}}{p_{it}} = \lambda_{it}\sigma = e_{it}\exp(\mathbf{x}'_{\lambda,it}\beta_{\lambda})\sigma.$$

E.A. Valdez (Mich State Univ)

Multinomial claim type

- Certain characteristics help describe the claims type.
- To explain this feature, we use the multinomial logit of the form

$$\Pr(M=m) = \frac{\exp(V_m)}{\sum_{s=1}^7 \exp(V_s)},$$

where
$$V_m = V_{it,m} = \mathbf{x}'_{M,it}\beta_{M,m}$$
.

- For our purposes, the covariates in $\mathbf{x}_{M,it}$ do not depend on the accident number j nor on the claim type m, but we do allow the parameters to depend on type m.
- Such has been proposed in Terza and Wilson (1990).
- An alternative model to claim type, multivariate probit, was considered in:
 - Young, Valdez and Kohn (2009)

E.A. Valdez (Mich State Univ)

Severity - Marginals

- We are particularly interested in accommodating the long-tail nature of claims.
- We use the generalized beta of the second kind (GB2) for each claim type with density

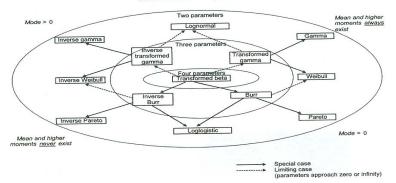
$$f(y) = \frac{\exp(\alpha_1 z)}{y |\sigma| B(\alpha_1, \alpha_2) \left[1 + \exp(z)\right]^{\alpha_1 + \alpha_2}},$$

where $z = (\ln y - \mu)/\sigma$.

- μ is a location, σ is a scale and α_1 and α_2 are shape parameters.
- With four parameters, distribution has great flexibility for fitting heavy tailed data.
- Introduced by McDonald (1984), used in insurance loss modeling by Cummins et al. (1990).
- Many distributions useful for fitting long-tailed distributions can be written as special or limiting cases of the GB2 distribution; see, for example, McDonald and Xu (1995).

E.A. Valdez (Mich State Univ)

GB2 Distribution



"Transformed Beta" Family of Distributions

Fig. 4.7 Distributional relationships and characteristics.

Source: Klugman, Panjer and Willmot (2004), p. 72

E.A. Valdez (Mich State Univ)

GB2 regression

- We allow scale and shape parameters to vary by type and thus consider α_{1k}, α_{2k} and σ_k for k = 1, 2, 3.
- Despite its prominence, there are relatively few applications that use the GB2 in a regression context:
 - McDonald and Butler (1990) used the GB2 with regression covariates to examine the duration of welfare spells.
 - Beirlant et al. (1998) demonstrated the usefulness of the Burr XII distribution, a special case of the GB2 with $\alpha_1 = 1$, in regression applications.
 - Sun et al. (2008) used the GB2 in a longitudinal data context to forecast nursing home utilization.
- We parameterize the location parameter as $\mu_{ik} = \mathbf{x}'_{ik}\beta_k$:
 - Thus, $\beta_{k,j} = \partial \ln \operatorname{E} \left(Y \mid \mathbf{x} \right) / \partial x_j$
 - Interpret the regression coefficients as proportional changes.

Dependencies among claim types

- We use a parametric copula (in particular, the t copula).
- Suppressing the $\{i\}$ subscript, we can express the joint distribution of claims (c_1,c_2,c_3) as

$$F(c_1, c_2, c_3) = H(F_1(c_1), F_2(c_2), F_3(c_3)).$$

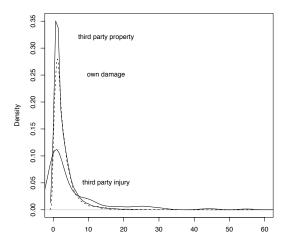
- Here, the marginal distribution of C_k is given by ${\rm F}_k(\cdot)$ and ${\rm H}(\cdot)$ is the copula.
- Modeling the joint distribution of the simultaneous occurrence of the claim types, when an accident occurs, provides the unique feature of our work.
- Some references are: Frees and Valdez (1998), Nelsen (1999).

Claim losses, by type of claim

Table 3. Summary Statistics of Claim Losses, by Type of Claim							
Statistic	Third Party	Own Dama	Third Party				
	Injury (C_1)	non-censored	all	Property (C_3)			
Number	231	17,974	20,503	6,136			
Mean	12,781.89	2,865.39	2,511.95	2,917.79			
Standard Deviation	39,649.14	4,536.18	4,350.46	3,262.06			
Median	1,700	1,637.40	1,303.20	1,972.08			
Minimum	10	2	0	3			
Maximum	336,596	367,183	367,183	56,156.51			

E.A. Valdez (Mich State Univ)

Density of losses by claim type

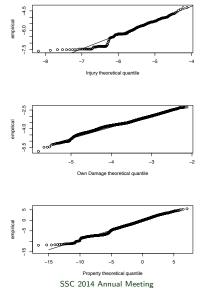


25-28 May 2014 18 / 27

E.A. Valdez (Mich State Univ)

Amount shown are in thousands. SSC 2014 Annual Meeting

Quantile-quantile plots for fitting GB2



25-28 May 2014

19 / 27

Constructing the severity likelihood

The likelihood depends on the association among claim amounts.

To see this, suppose that all three types of claims are observed (M = 7) and that each are uncensored.

In this case, the joint density would be

$$f_{uc,123}(c_1, c_2, c_3) = h_3(F_{it,1}(c_1), F_{it,2}(c_2), F_{it,3}(c_3)) \prod_{k=1}^{3} f_{it,k}(c_k),$$

where $f_{it,k}$ is the density associated with the $\{it\}$ observation and the kth type of claim and $h_3(.)$ is the probability density function for the trivariate copula.

E.A. Valdez (Mich State Univ)

SSC 2014 Annual Meeting

25-28 May 2014

20 / 27

For claim types M=1,3,5, no censoring is involved and we simply integrate out the effects of the types not observed.

For example, for M = 1, 3, we have the likelihood contributions to be $L_1(c_1) = f_1(c_1)$ and $L_3(c_3) = f_3(c_3)$, respectively.

For claim type M = 5, there is also no own damage amount, so that the likelihood contribution is given by

$$\begin{split} \mathbf{L}_{5}\left(c_{1},c_{3}\right) &= \int_{0}^{\infty}\mathbf{h}_{3}\left(\mathbf{F}_{1}\left(c_{1}\right),\mathbf{F}_{2}\left(z\right),\mathbf{F}_{3}\left(c_{3}\right)\right)\mathbf{f}_{1}\left(c_{1}\right)\mathbf{f}_{3}\left(c_{3}\right)\mathbf{f}_{2}\left(z\right)dz \\ &= \mathbf{h}_{2}\left(\mathbf{F}_{1}\left(c_{1}\right),\mathbf{F}_{3}\left(c_{3}\right)\right)\mathbf{f}_{1}\left(c_{1}\right)\mathbf{f}_{3}\left(c_{3}\right) \\ &= \mathbf{f}_{uc,13}\left(c_{1},c_{3}\right) \end{split}$$

where $h_{2} \mbox{ is the density of the bivariate copula. } \label{eq:hermitian}$

The cases M = 2, 4, 6, 7 involve own damage claims and so we need to allow for the possibility of censoring.

Let c_2^* be the unobserved loss and $c_2=\max\left(0,c_2^*-d\right)$ be the observed claim. Further define

$$\delta = \begin{cases} 1 & \text{if } c_2^* \leq d \\ 0 & \text{otherwise} \end{cases}$$

to be a binary variable that indicates censoring. Thus, the familiar ${\cal M}=2$ case is given by

$$L_{2}(c_{2}) = \begin{cases} f_{2}(c_{2}+d) / (1-F_{2}(d)) & \text{if } \delta = 0\\ F_{2}(d) & \text{if } \delta = 1 \end{cases}$$
$$= \left[\frac{f_{2}(c_{2}+d)}{1-F_{2}(d)} \right]^{1-\delta} (F_{2}(d))^{\delta}$$

E.A. Valdez (Mich State Univ)

For the ${\cal M}=6$ case, we have

$$L_{6}(c_{2},c_{3}) = \left[\frac{f_{uc,23}(c_{2}+d,c_{3})}{1-F_{2}(d)}\right]^{1-\delta} (H_{c,23}(d,c_{3}))^{\delta}$$

where

$$\mathbf{H}_{c,23}(d,c_{3}) = \int_{0}^{d} \mathbf{h}_{2}(\mathbf{F}_{2}(z),\mathbf{F}_{3}(c_{3})) \mathbf{f}_{3}(c_{3}) \mathbf{f}_{2}(z) dz.$$

It is not difficult to show that this can also be expressed as

$$H_{c,23}(d, c_3) = f_3(c_3) H_2(F_2(d), F_3(c_3)).$$

The M = 4 case follows in the same fashion, reversing the roles of types 1 and 3.

E.A. Valdez (Mich State Univ)

Finally, the more complex ${\cal M}=7$ case is given by

$$L_{7}(c_{1}, c_{2}, c_{3}) = \left[\frac{f_{uc, 123}(c_{1}, c_{2} + d, c_{3})}{1 - F_{2}(d)}\right]^{1-\delta} (H_{c, 123}(c_{1}, d, c_{3}))^{\delta}$$

and

$$\mathbf{H}_{c,123}(c_{1},d,c_{3}) = \int_{0}^{d} \mathbf{h}_{3}\left(\mathbf{F}_{1}(c_{1}),\mathbf{F}_{2}(z),\mathbf{F}_{3}(c_{3})\right) \mathbf{f}_{1}(c_{1}) \,\mathbf{f}_{3}(c_{3}) \,\mathbf{f}_{2}(z) \,dz.$$

With these definitions, the total severity log-likelihood for each observational unit is

$$\log (\mathbf{L}_S) = \sum_{j=1}^{7} I(M = j) \log (\mathbf{L}_j).$$

E.A. Valdez (Mich State Univ)

The fitted conditional severity models

	Table 11. Fitte	d Copula Model	
		Type of Copula	
Parameter	Independence	Normal copula	t-copula
Third Party Injury			
σ_1	1.316 (0.124)	1.320 (0.138)	1.320 (0.120
α_{11}	2.188 (1.482)	2.227 (1.671)	2.239 (1.447
α_{12}	500.069 (455.832)	500.068 (408.440)	500.054 (396.655
$\beta_{C,1,1}$ (intercept)	18.430 (2.139)	18.509 (4.684)	18.543 (4.713
Own Damage			
σ_2	1.305 (0.031)	1.301 (0.022)	1.302 (0.029
α_{21}	5.658 (1.123)	5.507 (0.783)	5.532 (0.992
α_{22}	163.605 (42.021)	163.699 (22.404)	170.382 (59.648
$\beta_{C,2,1}$ (intercept)	10.037 (1.009)	9.976 (0.576)	10.106 (1.315
$\beta_{C,2,2}$ (VehAge2)	0.090 (0.025)	0.091 (0.025)	0.091 (0.025
$\beta_{C,2,3}$ (Year1996)	0.269 (0.035)	0.274 (0.035)	0.274 (0.03
$\beta_{C,2,4}$ (Age2)	0.107 (0.032)	0.125 (0.032)	0.125 (0.032
$\beta_{C,2,5}$ (Age3)	0.225 (0.064)	0.247 (0.064)	0.247 (0.064
Third Party Proper	rty		
σ_3	0.846 (0.032)	0.853 (0.031)	0.853 (0.03)
α_{31}	0.597 (0.111)	0.544 (0.101)	0.544 (0.10)
α_{32}	1.381 (0.372)	1.534 (0.402)	1.534 (0.40)
$\beta_{C,3,1}$ (intercept)	1.332 (0.136)	1.333 (0.140)	1.333 (0.139
$\beta_{C,3,2}$ (VehAge2)	-0.098 (0.043)	-0.091 (0.042)	-0.091 (0.042
$\beta_{C,3,3}$ (Year1)	0.045 (0.011)	0.038 (0.011)	0.038 (0.01)
Copula	•		
ρ_{12}	-	0.018 (0.115)	0.018 (0.115
ρ_{13}	-	-0.066 (0.112)	-0.066 (0.11)
ρ_{23}	-	0.259 (0.024)	0.259 (0.02
r	-	-	193.055 (140.648
Model Fit Statistic	S		
log-likelihood	-31,006.505	-30,955.351	-30,955.28
number of parms	18	21	22
	CO 040 010	61 052 702	C1 0E4 E4
AIC	62,049.010 rors are in parenthesis	61,952.702	61,954.56

E.A. Valdez (Mich State Univ)

SSC 2014 Annual Meeting

25 / 27

Some recent follow-up work

"Multivariate aggregate loss model" by Ren (IME, 2012) and "Recursions and fast Fourier transforms for a new bivariate aggregate claims model" by Jin and Ren (SAJ, 2013)

- claims arrive according to Marked Markovian arrival process (MMAP)
- also allows for dependencies between claim frequency and severity
- can get explicit forms of the aggregate loss distribution, under certain assumptions
- numerical methods to solve e.g. use of fast Fourier/Laplace transforms

Concluding remarks

- Model features
 - Allows for covariates for the frequency, type and severity components
 - Captures the long-tail nature of severity through the GB2.
 - Provides for a "two-part" distribution of losses when a claim occurs, not necessary that all possible types of losses are realized.
 - Allows for possible dependencies among claims through a copula
 - Allows for heterogeneity from the longitudinal nature of policyholders (not claims)
- Other applications
 - Types of accidents, traffic violations, claims at-fault and no-fault
 - Could examine health care expenditure
 - Compare companies' performance using multilevel, intercompany experience