Longitudinal Modeling of Claim Counts using Jitters

joint work with Dr. Peng Shi, Northern Illinois University

The 16th International Congress on Insurance: Mathematics & Economics, University of Hong Kong, Hong Kong

28-30 June 2012

Emiliano A. Valdez
University of Connecticut, Storrs
Outline

1 Introduction
 Literature

2 Modeling
 Random effects models
 Copula models
 Continuous extension with jitters

3 Empirical analysis
 Model specification
 Singapore data

4 Inference
 Variable selection
 Estimation results
 Model validation

5 Concluding remarks

6 Selected reference
Assume we observe claim counts, N_{it}, for a group of policyholders i, for $i = 1, 2, \ldots, m$, in an insurance portfolio over T_i years.

For each policyholder, the observable data is a vector of claim counts expressed as $(N_{i1}, \ldots, N_{iT_i})$.

Data may be unbalanced: length of time T_i observed may differ among policyholders.

Set of observable covariates x_{it} useful to sub-divide the portfolio into classes of risks with homogeneous characteristics.

Here, we present an alternative approach to modeling longitudinal insurance claim counts using copulas and compare its performance with standard and traditional count regression models.
Literature

- Alternative models for longitudinal counts:
 - Random effects models: the most popular approach
 - Marginal models with serial correlation
 - Autoregressive and integer-valued autoregressive models
 - Common shock models

- Useful books on count regression
 - Cameron and Trivedi (1998): Regression Analysis of Count Data
 - Denuit et al. (2007): Actuarial Modelling of Claim Counts: Risk Classification, Credibility and Bonus-Malus Systems
 - Frees (2009): Regression Modeling with Actuarial and Financial Applications
 - Winkelmann (2010): Econometric Analysis of Count Data

- The recent survey work of Boucher, Denuit and Guillén (2010) provides for a comparison of the various models.
Literature - continued

- Copula regression for multivariate discrete data:
 - Increasingly becoming popular
 - Applications found in various disciplines:
 - Biostatistics: Song et al. (2008), Madsen and Fang (2010)
 - Actuarial science: Purcaru and Denuit (2003), Shi and Valdez (2011)
 - Modeling longitudinal insurance claim counts:
 - Boucher, Denuit and Guillén (2010): model joint pmf of claim counts

- We adopt an approach close to Madsen and Fang (2010): joint regression analysis.
Random effects models

- To capture the **intertemporal dependence** within subjects, the most popular approach is to introduce a common random effect, say α_i, to each observation.

- The joint pmf for $(N_{i1}, \ldots, N_{iT_i})$ can be expressed as

$$
\Pr(N_{i1} = n_{i1}, \ldots, N_{iT_i} = n_{iT_i}) = \int_0^\infty \Pr(N_{i1} = n_{i1}, \ldots, N_{iT_i} = n_{iT_i} | \alpha_i) f(\alpha_i) \, d\alpha_i
$$

where $f(\alpha_i)$ is the density function of the random effect.

- Typical assumption is conditional independence as follows:

$$
\Pr(N_{i1} = n_{i1}, \ldots, N_{iT_i} = n_{iT_i} | \alpha_i) = \Pr(N_{i1} = n_{i1} | \alpha_i) \times \cdots \times \Pr(N_{iT_i} = n_{iT_i} | \alpha_i).
$$
Some known random effects models

- **Poisson** \(N_{it} \sim \text{Poisson}(\tilde{\lambda}_{it}) \)
 \(\tilde{\lambda}_{it} = \eta_i \lambda_{it} = \eta_i \omega_{it} \exp(x_{it}'\beta) \), and \(\eta_i \sim \Gamma(\psi, \psi) \)
 \(\tilde{\lambda}_{it} = \omega_{it} \exp(\alpha_i + x_{it}'\beta) \), and \(\alpha_i \sim N(0, \sigma^2) \)

- **Negative Binomial**
 \(\text{NB1: } 1 + 1/\nu_i \sim \text{Beta}(a, b) \)
 \(\Pr(N_{it} = n_{it}|\nu_i) = \frac{\Gamma(n_{it} + \lambda_{it})}{\Gamma(\lambda_{it}) \Gamma(n_{it} + 1)} \left(\frac{\nu_i}{1 + \nu_i} \right)^{\lambda_{it}} \left(\frac{1}{1 + \nu_i} \right)^{n_{it}} \)
 \(\text{NB2: } \alpha_i \sim N(0, \sigma^2) \)
 \(\Pr(N_{it} = n_{it}|\alpha_i) = \frac{\Gamma(n_{it} + \psi)}{\Gamma(\psi) \Gamma(n_{it} + 1)} \left(\frac{\psi}{\tilde{\lambda}_{it} + \psi} \right)^{\psi} \left(\frac{\tilde{\lambda}_{it}}{\tilde{\lambda}_{it} + \psi} \right)^{n_{it}} \)

- **Zero-inflated models**
 \(\Pr(N_{it} = n_{it}|\delta_i, \alpha_i) = \begin{cases}
 \pi_{it} + (1 - \pi_{it}) f(n_{it}|\alpha_i) & \text{if } n_{it} = 0 \\
 (1 - \pi_{it}) f(n_{it}|\alpha_i) & \text{if } n_{it} > 0
 \end{cases} \)
 \log \left(\frac{\pi_{it}}{1 - \pi_{it}} \right| \delta_i \right) = \delta_i + \mathbf{z}_{it}'\gamma,
 \text{ZIP } (f \sim \text{Poisson}) \text{ and } \text{ZINB } (f \sim \text{NB})
Copula models

- Joint pmf using copula:

\[
\Pr(N_{i1} = n_{i1}, \ldots, N_{iT} = n_{iT}) = \\
\sum_{j_1=1}^{2} \cdots \sum_{j_T=1}^{2} (-1)^{j_1+\cdots+j_T} C(u_{1j_1}, \ldots, u_{Tj_T})
\]

Here, \(u_{t1} = F_{it}(n_{it})\), \(u_{t2} = F_{it}(n_{it} - 1)\), and \(F_{it}\) denotes the distribution of \(N_{it}\).

- Downside of the above specification:
 - contains \(2^T\) terms and becomes unmanageable for large \(T\)
 - involves high-dimensional integration
 - other critiques for the case of multivariate discrete data: see Genest and Něslehová (2007)
Continuous extension with jitters

- Define $N_{it}^* = N_{it} - U_{it}$ where $U_{it} \sim \text{Uniform}(0, 1)$

- The joint pdf of jittered counts for the ith policyholder $(N_{i1}^*, N_{i2}^*, \ldots, N_{iT}^*)$ may be expressed as:

$$f_i^*(n_{i1}^*, \ldots, n_{iT}^*) = c(F_{i1}^*(n_{i1}^*), \ldots, F_{iT}^*(n_{iT}^*); \theta) \prod_{t=1}^{T} f_{it}^*(n_{it}^*)$$

- Retrieve the joint pmf of (N_{i1}, \ldots, N_{iT}) by averaging over the jitters:

$$f_i(n_{i1}, \ldots, n_{iT}) = \mathbb{E}_{U_i} \left[c(F_{i1}^*(n_{i1} - U_{i1}), \ldots, F_{iT}^*(n_{iT} - U_{iT}); \theta) \prod_{t=1}^{T} f_{it}^*(n_{it} - U_{it}) \right]$$

- Based on relations:
 - $F_{it}^*(n) = F_{it}([n]) + (n - [n])f_{it}([n + 1])$
 - $f_{it}^*(n) = f_{it}([n + 1])$
Model specification

- Assume f_{it} follows NB2 distribution:

$$f_{it}(n) = \Pr(N_{it} = n) = \frac{\Gamma(n + \psi)}{\Gamma(\psi)\Gamma(n + 1)} \left(\frac{\psi}{\lambda_{it} + \psi}\right)^n \left(\frac{\lambda_{it}}{\lambda_{it} + \psi}\right)^n,$$

with $\lambda_{it} = \exp(x_{it}'\beta)$.

- Consider elliptical copulas for the jittered counts and examine three dependence structure (e.g. $T = 4$):

 - Autoregressive: $\Sigma_{AR} = \begin{pmatrix} 1 & \rho & \rho^2 & \rho^3 \\ \rho & 1 & \rho & \rho^2 \\ \rho^2 & \rho & 1 & \rho \\ \rho^3 & \rho^2 & \rho & 1 \end{pmatrix}$

 - Exchangeable: $\Sigma_{EX} = \begin{pmatrix} 1 & \rho & \rho & \rho \\ \rho & 1 & \rho & \rho \\ \rho & \rho & 1 & \rho \\ \rho & \rho & \rho & 1 \end{pmatrix}$

 - Toeplitz: $\Sigma_{TOEP} = \begin{pmatrix} 1 & \rho_1 & \rho_2 & 0 \\ \rho_1 & 1 & \rho_1 & \rho_2 \\ \rho_2 & \rho_1 & 1 & \rho_1 \\ 0 & \rho_2 & \rho_1 & 1 \end{pmatrix}$

- Likelihood based method is used to estimate the model.
- A large number of simulations are used to approximate the likelihood.
Singapore data

- For our empirical analysis, claims data are obtained from an automobile insurance company in Singapore.
- Data was over a period of nine years 1993-2001.
- Data for years 1993-2000 was used for model calibration; year 2001 was our hold-out sample for model validation.
- Focus on “non-fleet” policy
- Limit to policyholders with comprehensive coverage

Number and Percentage of Claims by Count and Year

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>88.10</td>
<td>85.86</td>
<td>85.21</td>
<td>83.88</td>
<td>90.41</td>
<td>85.62</td>
<td>86.89</td>
<td>87.18</td>
<td>89.71</td>
<td>3480</td>
</tr>
<tr>
<td>1</td>
<td>10.07</td>
<td>12.15</td>
<td>13.13</td>
<td>14.29</td>
<td>8.22</td>
<td>13.73</td>
<td>11.59</td>
<td>11.54</td>
<td>9.71</td>
<td>468</td>
</tr>
<tr>
<td>2</td>
<td>1.47</td>
<td>2.00</td>
<td>1.25</td>
<td>1.83</td>
<td>0.00</td>
<td>0.65</td>
<td>1.37</td>
<td>0.92</td>
<td>0.57</td>
<td>50</td>
</tr>
<tr>
<td>3</td>
<td>0.37</td>
<td>0.00</td>
<td>0.21</td>
<td>0.00</td>
<td>1.37</td>
<td>0.00</td>
<td>0.15</td>
<td>0.18</td>
<td>0.00</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>0.00</td>
<td>0.00</td>
<td>0.21</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.18</td>
<td>0.00</td>
<td>0.00</td>
<td>2</td>
</tr>
<tr>
<td>Number</td>
<td>546</td>
<td>601</td>
<td>480</td>
<td>273</td>
<td>73</td>
<td>306</td>
<td>656</td>
<td>546</td>
<td>525</td>
<td>4006</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Overall Number</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>3480</td>
<td>86.9</td>
</tr>
<tr>
<td>468</td>
<td>11.7</td>
</tr>
<tr>
<td>50</td>
<td>1.25</td>
</tr>
<tr>
<td>6</td>
<td>0.15</td>
</tr>
<tr>
<td>2</td>
<td>0.05</td>
</tr>
<tr>
<td>4006</td>
<td>100</td>
</tr>
</tbody>
</table>
Summary statistics

- Data contain rating variables including:
 - vehicle characteristics: age, brand, model, make
 - policyholder characteristics: age, gender, marital status
 - experience rating scheme: no claim discount (NCD)

<table>
<thead>
<tr>
<th>Person Age (in years)</th>
<th>Percentage by Count</th>
<th>Overall</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>25 and younger</td>
<td>73.33</td>
<td>23.33</td>
</tr>
<tr>
<td>26-35</td>
<td>87.49</td>
<td>11.12</td>
</tr>
<tr>
<td>36-45</td>
<td>86.63</td>
<td>11.80</td>
</tr>
<tr>
<td>46-60</td>
<td>86.85</td>
<td>11.92</td>
</tr>
<tr>
<td>60 and over</td>
<td>91.67</td>
<td>6.25</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gender</th>
<th>Percentage by Count</th>
<th>Overall</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Female</td>
<td>91.49</td>
<td>7.98</td>
</tr>
<tr>
<td>Male</td>
<td>86.64</td>
<td>11.86</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No Claims Discount (NCD)</th>
<th>Percentage by Count</th>
<th>Overall</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>84.83</td>
<td>13.17</td>
</tr>
<tr>
<td>10</td>
<td>86.21</td>
<td>12.58</td>
</tr>
<tr>
<td>20</td>
<td>89.21</td>
<td>9.25</td>
</tr>
<tr>
<td>30</td>
<td>89.16</td>
<td>9.49</td>
</tr>
<tr>
<td>40</td>
<td>88.60</td>
<td>11.40</td>
</tr>
<tr>
<td>50</td>
<td>88.83</td>
<td>10.46</td>
</tr>
</tbody>
</table>

Number by Count | 3480 | 468 | 50 | 6 | 2 | 4006 | 100
Variable selection

- Preliminary analysis chose:
 - young: 1 if below 25, 0 otherwise
 - midfemale: 1 if mid-aged (between 30-50) female drivers, 0 otherwise
 - zeroncd: 1 if zero ncd, 0 otherwise
 - vage: vehicle age
 - vbrand1: 1 for vehicle brand 1
 - vbrand2: 1 for vehicle brand 2

- Variable selection procedure used is beyond scope of our work.
Estimation Results

Estimates of standard longitudinal count regression models

<table>
<thead>
<tr>
<th>Parameter</th>
<th>RE-Poisson</th>
<th>RE-NegBin</th>
<th>RE-ZIP</th>
<th>RE-ZINB</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Estimate</td>
<td>p-value</td>
<td>Estimate</td>
<td>p-value</td>
</tr>
<tr>
<td>intercept</td>
<td>-1.7173</td>
<td><.0001</td>
<td>1.6404</td>
<td>0.1030</td>
</tr>
<tr>
<td>young</td>
<td>0.6408</td>
<td>0.0790</td>
<td>0.6543</td>
<td>0.0690</td>
</tr>
<tr>
<td>midfemale</td>
<td>-0.7868</td>
<td>0.0310</td>
<td>-0.7692</td>
<td>0.0340</td>
</tr>
<tr>
<td>zeroncd</td>
<td>0.2573</td>
<td>0.0050</td>
<td>0.2547</td>
<td>0.0060</td>
</tr>
<tr>
<td>vage</td>
<td>-0.0438</td>
<td>0.0210</td>
<td>-0.0442</td>
<td>0.0210</td>
</tr>
<tr>
<td>vbrand1</td>
<td>0.5493</td>
<td><.0001</td>
<td>0.5473</td>
<td><.0001</td>
</tr>
<tr>
<td>vbrand2</td>
<td>0.1831</td>
<td>0.0740</td>
<td>0.1854</td>
<td>0.0710</td>
</tr>
</tbody>
</table>

LogLik: -1498.40, -1497.78, -1498.00, -1497.50
AIC: 3012.81, 3013.57, 3016.00, 3017.00
BIC: 3056.41, 3062.62, 3070.50, 3077.00

Estimates of copula model with various dependence structures

<table>
<thead>
<tr>
<th>Parameter</th>
<th>AR(1) Estimate</th>
<th>AR(1) StdErr</th>
<th>Exchangeable Estimate</th>
<th>Exchangeable StdErr</th>
<th>Toeplitz(2) Estimate</th>
<th>Toeplitz(2) StdErr</th>
</tr>
</thead>
<tbody>
<tr>
<td>intercept</td>
<td>-1.8028</td>
<td>0.0307</td>
<td>-1.8422</td>
<td>0.0353</td>
<td>-1.7630</td>
<td>0.0284</td>
</tr>
<tr>
<td>young</td>
<td>0.6529</td>
<td>0.0557</td>
<td>0.7130</td>
<td>0.0667</td>
<td>0.6526</td>
<td>0.0631</td>
</tr>
<tr>
<td>midfemale</td>
<td>-0.6956</td>
<td>0.0588</td>
<td>-0.6786</td>
<td>0.0670</td>
<td>-0.7132</td>
<td>0.0596</td>
</tr>
<tr>
<td>zeroncd</td>
<td>0.2584</td>
<td>0.0198</td>
<td>0.2214</td>
<td>0.0172</td>
<td>0.2358</td>
<td>0.0176</td>
</tr>
<tr>
<td>vage</td>
<td>-0.0411</td>
<td>0.0051</td>
<td>-0.0422</td>
<td>0.0056</td>
<td>-0.0453</td>
<td>0.0042</td>
</tr>
<tr>
<td>vbrand1</td>
<td>0.5286</td>
<td>0.0239</td>
<td>0.5407</td>
<td>0.0275</td>
<td>0.4962</td>
<td>0.0250</td>
</tr>
<tr>
<td>vbrand2</td>
<td>0.1603</td>
<td>0.0166</td>
<td>0.1752</td>
<td>0.0229</td>
<td>0.1318</td>
<td>0.0198</td>
</tr>
</tbody>
</table>

\(\phi\): 2.9465, 0.1024, 2.9395, 0.1130, 2.9097, 0.1346
\(\rho_1\): 0.1216, 0.0028, 0.1152, 0.0027, 0.1175, 0.0025
\(\rho_2\): 0.0914, 0.0052

LogLik: -1473.25, -1454.04, -1468.74
AIC: 2964.49, 2926.08, 2957.49
BIC: 3013.55, 2975.13, 3011.99
Model validation

- Copula validation
 - The specification of the copula is validated using *t*-plot method as suggested in Sun et al. (2008) and Shi (2010).
 - In a good fit, we would expect to see a linear relationship in the *t*-plot.

- Out-of-sample validation: based on predictive distribution calculated using

\[
f_{iT+1}(n_{iT+1}|n_i1, \ldots, n_{iT}) = \Pr(N_{iT+1} = n_{iT+1}|N_i1 = n_i1, \ldots, N_iT = n_{iT})
\]

\[
= \frac{E_U_i \left[c(F_1^*(n_{i1} - U_{i1}), \ldots, F_{iT}^*(n_{iT} - U_{iT}); \theta) \prod_{t=1}^{T+1} f_{it}^*(n_{it} - U_{it}) \right]}{E_U_i \left[c(F_1^*(n_{i1} - U_{i1}), \ldots, F_{iT}^*(n_{iT} - U_{iT}); \theta) \prod_{t=1}^{T} f_{it}^*(n_{it} - U_{it}) \right]}
\]

- Performance measures used:
 - LogLik = \(\sum_{i=1}^{M} \log \left(f_{iT+1}(n_{iT+1}|n_i1, \ldots, n_{iT}) \right) \)
 - MSPE = \(\sum_{i=1}^{M} \left[n_{iT+1} - E(N_{iT+1}|N_i1 = n_i1, \ldots, N_iT = n_{iT}) \right]^2 \)
 - MAPE = \(\sum_{i=1}^{M} \left| n_{iT+1} - E(N_{iT+1}|N_i1 = n_i1, \ldots, N_iT = n_{iT}) \right| \)
Results of model validation

Out-of-sample validation

<table>
<thead>
<tr>
<th></th>
<th>Standard Model</th>
<th>Copula Model</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RE-Poisson</td>
<td>RE-NegBin</td>
</tr>
<tr>
<td>LogLik</td>
<td>-177.786</td>
<td>-177.782</td>
</tr>
<tr>
<td>MSPE</td>
<td>0.107</td>
<td>0.107</td>
</tr>
<tr>
<td>MAPE</td>
<td>0.213</td>
<td>0.213</td>
</tr>
</tbody>
</table>

LogLik:
- Negative log-likelihood, lower is better.

MSPE:
- Mean squared prediction error.

MAPE:
- Mean absolute percentage error.
Concluding remarks

- We examined an alternative way to model longitudinal count based on copulas:
 - employed a continuous extension with jitters
 - method preserves the concordance-based association measures

- The approach avoids the criticisms often made with using copulas directly on multivariate discrete observations.

- For empirical demonstration, we applied the approach to a dataset from a Singapore auto insurer. Our findings show:
 - better fit when compared with random-effect specifications
 - validated the copula specification based on t-plot and its performance based on hold-out observations

- Our contributions to the literature: (1) application to insurance data, and (2) application to longitudinal count data.
Selected reference

