

# Securitization of Longevity Risk in Reverse Mortgages

Emiliano A. Valdez, PhD, FSA Michigan State University

joint work with L. Wang and J. Piggott

XXIII CNSF's International Seminar, Mexico City, Nov 13-14, 2013

EA Valdez (MSU)

Sec of Longevity Risk in Reverse Mortgages

Introduction

# Securitization of longevity risks



- We are witnessing a dramatic improvement in mortality across the world.
- Annuity and pension providers are primarily affected by this longevity risk:
  - annuity benefits are usually paid longer when there is a longer life expectancy
- Securitization is a vehicle to re-package the risk so that it may be transferred to the financial market:
  - essentially re-packaging the cashflows into securities that can be traded
  - survivor or mortality bonds; survivor swaps mortality derivatives



### Some advantages to securitization

- Significantly larger capacity of the capital market (vis-a-vis the insurance market)
- Improved pricing as there are larger number of investors (against a limited number of insurance providers)
- Helps investors to diversify since many believe insurance risk may be considered uncorrelated to many asset classes
- Reduces counterparty default risk
- Lowers the cost of capital

# Some research works published



• Pricing for such securitized instruments can be tricky:

- mortality improvement model or forecasting of mortality: extension of Lee-Carter, term structure of mortality
- valuation issues related to incomplete markets
- Some useful early works:
  - Blake and Burrows (2001)
  - Cowley and Cummins (2005); Cairns, Blake and Dowd (2006)
  - Lin and Cox (2005); Cox, Lin and Wang (2006)
  - Liao, Yang and Huang (2007); Wills and Sherris (2010)



### Reverse mortgages

A reverse mortgage is a special type of loan that allows you to convert a proportion of your home equity into cash:

• lump sum, annuity, line of credit or a combination

There are special features that make it different from a conventional loan:

- no repayments of principal or interest, but outstanding balance still accrues with interest
- repayment is when you as borrower dies, or voluntarily leaves the property
- you can continue to live in the property
- "nonrecourse" where lender can never recover from other assets of borrower
- underwriting is usually based solely on the value of the home

# Risks of reverse mortgages to lenders

Although there are benefits associated with reverse mortgages, they are not without the presence of risks:

- occupancy risk and longevity risk
- interest rate risk
- house price risk
- other risks: maintenance, expenses
  - usually associated with inflation





Figure : Illustration of the crossover risk

EA Valdez (MSU)

Sec of Longevity Risk in Reverse Mortgages

XXIII CNSF's Int Sem 7 / 24





Figure : Cash flow analysis for reverse mortgage lender

EA Valdez (MSU)

Sec of Longevity Risk in Reverse Mortgages

XXIII CNSF's Int Sem 8 / 24

Pricing equation



# Pricing lump sum reverse mortgages

The pricing equation for a lump sum reverse mortgage can be expressed as:

$$\mathsf{E}\left[e^{-rT}Q_{0}\exp\left(\int_{0}^{T}\eta_{s}ds\right)\right]$$
$$=\mathsf{E}\left[e^{-rT}\min\left[Q_{0}\exp\left(\int_{0}^{T}\left(r_{s}+\lambda\right)ds\right),H_{0}\exp\left(\int_{0}^{T}\delta_{s}ds\right)\right]\right]$$

where:

- $Q_0$  is the initial loan amount
- cost of capital accumulates at  $\eta$
- $H_0$  is the initial house price
- house appreciation rate is  $\delta$
- $\lambda$  is the actuarially fair risk premium







Figure : Recommended structure of the reverse mortgage securitization

XXIII CNSF's Int Sem 10 / 24



# Cash flow analysis for each component

- Retailer
- Lender
- SPC (special purpose company)
- Investors

# Reverse mortgage survivor bond Type 1 $% \left( {{{\rm{Typ}}}} \right)$

- Suppose lender holds a portfolio of  $l_0$  loans. At time 0, assume all borrowers are of the same age, and each borrow a lump sum of  $Q_0$  against their home currently valued at  $H_0$ .
- To hedge longevity risk, lender purchases insurance from the SPC at a lump sum premium of P.
- Here, in each period after the crossover, SPC will pay the lender a benefit of  $A_t \left( l_t \hat{l}_t \right)$ , up to a ceiling amount of C, if the number of survived loans  $l_t$  exceeds the predetermined trigger  $\hat{l}_t$ .
- At t, loss amount for each loan i is  $L_{i,t}$ , and since interest and house appreciation rates are constant,  $L_{i,t} = L_t$  for all i and t.

The amount  $A_t$  is determined as

$$A_t = \frac{L_{t+1}}{1+r} - L_t.$$





Figure : Single loss  $L_t$  in each period

Sec of Longevity Risk in Reverse Mortgages





Figure : Appreciation  $A_t$  of each loss in each period

EA Valdez (MSU)

Sec of Longevity Risk in Reverse Mortgages

XXIII CNSF's Int Sem 14 / 24

# Pricing for survivor bond Type 1



$$C_t = \begin{cases} C & \text{if } l_t \leq \hat{l}_t \\ C - A_t \left( l_t - \hat{l}_t \right) & \text{if } \hat{l}_t < l_t < \frac{C}{A_t} \\ 0 & \text{if } l_t > \frac{C}{A_t} \end{cases}$$

This is equivalent to

$$C_{t} = C - \left[A_{t}\left(l_{t} - \widehat{l}_{t}\right), 0\right]_{+} + \left[A_{t}\left(l_{t} - \widehat{l}_{t}\right) - C, 0\right]_{+}$$

The pricing equation of the survivor bond type 1:

$$V = Fv^{T} + \sum_{k=1}^{T} v^{k} \left\{ C - \mathsf{E} \left[ A_{t} \left( l_{t} - \hat{l}_{t} \right), 0 \right]_{+} + \mathsf{E} \left[ A_{t} \left( l_{t} - \hat{l}_{t} \right) - C, 0 \right]_{+} \right\}$$

Sec of Longevity Risk in Reverse Mortgages



### Numerical illustration

For purposes of illustration, let the annual interest rate r be 6.5%, annual house price appreciation c be 3%, the risk premium the lender charges  $\lambda_1$  and is charged  $\lambda_2$  be 3% and 1.5%, respectively, and the house price  $H_0$  be \$100,000.

Based on some initial simulations, the initial loan amount  $Q_0$  is set at \$39,222 which gives the maximal safe loan amount.

Then, the  $L_t$  and  $A_t$  in each period are shown in the subsequent tables.

# Single loss in each period



| Period | Loss $L_t$ | Period | Loss $L_t$ | Period | Loss $L_t$ |
|--------|------------|--------|------------|--------|------------|
| 1      | -588.33    | 14     | -3590.22   | 27     | 16738.21   |
| 2      | -691.29    | 15     | -4059.30   | 28     | 18400.75   |
| 3      | -807.79    | 16     | 2500.51    | 29     | 20206.01   |
| 4      | -939.43    | 17     | 5935.67    | 30     | 22165.68   |
| 5      | -1087.97   | 18     | 6651.23    | 31     | 24292.41   |
| 6      | -1255.36   | 19     | 7431.25    | 32     | 26599.90   |
| 7      | -1443.77   | 20     | 8281.12    | 33     | 29102.90   |
| 8      | -1655.62   | 21     | 9206.63    | 34     | 31817.40   |
| 9      | -1893.57   | 22     | 10214.08   | 32     | 34760.64   |
| 10     | -2160.57   | 23     | 11310.25   | 36     | 37951.27   |
| 11     | -2459.91   | 24     | 12502.48   | 37     | 41409.46   |
| 12     | -2795.21   | 25     | 13798.72   | 38     | 45156.95   |
| 13     | -3170.50   | 26     | 15207.54   |        |            |



### Appreciation of each loss in each period

| Period | Appreciation $A_t$ | Period | Appreciation $A_t$ | Period | Appreciation $A_t$ |
|--------|--------------------|--------|--------------------|--------|--------------------|
| 1      | -552.42            | 14     | -2092.50           | 27     | 11173.30           |
| 2      | -613.19            | 15     | -2313.83           | 28     | 11712.80           |
| 3      | -680.39            | 16     | 4093.37            | 29     | 12284.82           |
| 4      | -754.69            | 17     | 7166.25            | 30     | 12891.65           |
| 5      | -836.83            | 18     | 7475.87            | 31     | 13535.76           |
| 6      | -927.60            | 19     | 7802.34            | 32     | 14219.77           |
| 7      | -1027.90           | 20     | 8146.79            | 33     | 14946.54           |
| 8      | -1138.70           | 21     | 8510.39            | 34     | 15719.13           |
| 9      | -1261.07           | 22     | 8894.45            | 32     | 16540.83           |
| 10     | -1396.21           | 23     | 9300.32            | 36     | 17415.19           |
| 11     | -1545.42           | 24     | 9729.49            | 37     | 18346.04           |
| 12     | -1710.12           | 25     | 10183.56           | 38     | 19337.48           |
| 13     | -1891.91           | 26     | 10664.21           |        |                    |



# Projected trigger values in each period

| Period | Trigger $\widehat{l}_t$ | Period | Trigger $\widehat{l}_t$ | Period | Trigger $\widehat{l}_t$ |
|--------|-------------------------|--------|-------------------------|--------|-------------------------|
| 1      | 986                     | 14     | 677                     | 27     | 152                     |
| 2      | 973                     | 15     | 639                     | 28     | 124                     |
| 3      | 958                     | 16     | 599                     | 29     | 99                      |
| 4      | 942                     | 17     | 557                     | 30     | 79                      |
| 5      | 924                     | 18     | 514                     | 31     | 61                      |
| 6      | 904                     | 19     | 470                     | 32     | 48                      |
| 7      | 883                     | 20     | 427                     | 33     | 37                      |
| 8      | 859                     | 21     | 384                     | 34     | -28                     |
| 9      | 834                     | 22     | 342                     | 32     | 21                      |
| 10     | 807                     | 23     | 300                     | 36     | 15                      |
| 11     | 778                     | 24     | 259                     | 37     | 11                      |
| 12     | 746                     | 25     | 220                     | - 38   | 8                       |
| 13     | 712                     | 26     | 183                     |        | 22.35                   |



# Calculation of mortality bond price (Type 1)

| Number of loans                       | 1000          |
|---------------------------------------|---------------|
| Initial house value                   | \$100,000     |
| Lump sum borrowed                     | \$39,222      |
| Face value of straight bond           | \$100,000,000 |
| Face value of survivor bond           | \$100,000,000 |
| Coupon rate for both bonds            | 6.5% p.a.     |
| Annual aggregate cash flow out of SPC | \$6,500,000   |
| and the second shared                 | A An and      |
| Straight bond price                   | \$100,000,000 |
| Survivor bond price                   | \$99,902,898  |
| Premium paid to SPC                   | \$97,102      |

Securitization Survivo

Survivor bond Type 1



# Results of sensitivity testing (Type 1)

| Shock $\varepsilon_t$ | Statistic      | l <sub>20</sub> | PV of coupons | Percentage |
|-----------------------|----------------|-----------------|---------------|------------|
| Correct of            |                |                 | and principal | change     |
| 1%                    | Min            | 429             | 99, 790, 111  | -0.11%     |
| 100 M 18 10           | 5% percentile  | 430             | 99, 793, 980  | -0.11%     |
|                       | 95% percentile | 432             | 99, 795, 946  | -0.11%     |
|                       | Max            | 435             | 99, 796, 337  | -0.11%     |
|                       | Mean           | 431             | 99, 795, 199  | -0.11%     |
|                       | Stdev          | 1               | 635           |            |
| 5%                    | Min            | 435             | 99, 768, 435  | -0.13%     |
|                       | 5% percentile  | 440             | 99, 785, 248  | -0.12%     |
|                       | 95% percentile | 453             | 99, 795, 809  | -0.11%     |
| 5 . 4                 | Max            | 465             | 99, 797, 493  | -0.11%     |
| 1 1-                  | Mean           | 446             | 99,791,922    | -0.11%     |
| E Horas               | Stdev          | 4               | 3, 369        |            |
| 10%                   | Min            | 444             | 99, 744, 368  | -0.16%     |
| 341                   | 5% percentile  | 453             | 99,773,260    | -0.13%     |
| Andread B             | 95% percentile | 481             | 99, 798, 092  | -0.11%     |
|                       | Max            | 504             | 99, 786, 999  | -0.10%     |
|                       | Mean           | 465             | 99, 786, 940  | -0.12%     |
|                       | Stdev          | 8               | 6,946         | 11-241     |
| 25%                   | Min            | 465             | 99,663,820    | -0.24%     |
| de la                 | 5% percentile  | 491             | 99,714,999    | -0.19%     |
|                       | 95% percentile | 569             | 99, 783, 484  | -0.12%     |
| i                     | Max            | 641             | 99, 793, 361  | -0.11%     |
|                       | Mean           | 528             | 99,758,254    | -0.14%     |
|                       | Stdev          | 24              | 21,573        | LA St      |
| 50%                   | Min            | 411             | 99, 482, 588  | -0.42%     |
|                       | 5% percentile  | 483             | 99,557,089    | -0.35%     |
|                       | 95% percentile | 699             | 99,751,549    | -0.15%     |
|                       | Max            | 825             | 99,774,291    | -0.13%     |
|                       | Mean           | 584             | 99,663,909    | -0.24%     |
|                       | Stdev          | 65              | 69,833        |            |

EA Valdez (MSU)

Sec of Longevity Risk in Reverse Mortgages

XXIII CNSF's Int Sem 21 / 24

Conclusion

# Concluding remarks



- The reverse mortgage is a promising financial product with many potential economic benefits to both consumers and suppliers.
- However, due to the various risks involved in reverse mortgages, especially the longevity risk component, the development of the product has to some extent been stunted.
- We suggest using securitization to deal with the risks to the lender, particularly the longevity risk component.
  - Our results indicate that mortality securitization is a good method to manage longevity risk in reverse mortgages.
  - Given the many benefits of mortality securitization, we believe that it can help the future development of reverse mortgage products in the capital market.

# Main reference



Wang, L., Valdez, E.A., and Piggott, J., 2008, "Securitization of Longevity Risk in Reverse Mortgages", *North American Actuarial Journal*, Vol 12, No 4, pp. 345-371.

Sec of Longevity Risk in Reverse Mortgages

XXIII CNSF's Int Sem 23 / 24



# Thank you -

EA Valdez (MSU)

Sec of Longevity Risk in Reverse Mortgages

XXIII CNSF's Int Sem 24 / 24