

Correlated Loss Triangles for Multiple Lines of Business

Emiliano A. Valdez, PhD, FSA Michigan State University

joint work with Priyantha H. Katuwandeniyage, U. of Connecticut

International Workshop on High-Dimensional Copulas: Theory, Modeling and Applications Beijing, CHINA, 3-5 January 2014

EA Valdez (MSU) and Priyantha (UConn)

Introduction

Timeline of non-life insurance claims

This diagram displays how claims may be typically processed for non-life insurance or similar products.

It illustrates why there is a need to hold loss reserves for claims, possibly already incurred, but not yet reported.

This diagram was inspired by similar graphs from Wüthrich and Merz (2008) and Frees (2010).

Introduction

The importance of loss reserves

- Generally to ensure enough funds to cover losses that have yet to be paid or are expected to be paid.
- Helpful to the company for:
 - assessing its financial health
 - establishing capital needs
 - strategic planning and forecasting
 - meeting regulatory requirements
 - assessing adequacy of premiums
- When companies have several lines of business, or even different product types within a line of business, it is useful:
 - to examine the presence of possible dependencies within the structure of the company; and
 - to be able the financial effect of these dependencies.
- See G. Taylor (2000).

EA Valdez (MSU) and Priyantha (UConn)

Introduction

Run-off triangles for loss reserving

- For purposes of loss reserving:
 - widely popular to formulate the development of claims in a loss run-off triangle format;
 - such a run-off triangle gives you the observable claims for a particular accident period over the course of several periods;
 - for insurers with multiple lines, often we see that they maintain indvidual loss triangles for each line.
- Insurance companies would have an interest in both understanding the impact of each line of business to the aggregate loss reserves.
 - It has been shown that simple addition of aggregating loss reserves does not provide a very accurate picture of the total reserves needed.
 - See, for example, Ajane (1994) and Schmidt (2006).

EA Valdez (MSU) and Priyantha (UConn)

Empirical data

- The empirical part of our investigation was motivated by:
 - the loss triangles derived from several lines of business from an insurance company;
 - data was observed over a period of ten years: 1988 to 1997;
- The different lines of business considered were:
 - Home owners/farm owners
 - Private passenger auto liability/medical
 - Commercial multiple peril
 - Other liability occurrence
- For each line of business, we observe the following:

Variable	Description
AccidentYear	The year that accident was occurred
DevelopmentLag	Incurral year $+ 1$
IncurLoss	Incurred losses and allocated expenses reported at year end
CumPaidLoss	Cumulative and paid losses and allocated expenses at year end
EarnedPremN	Premiums earned at incurral year - net

Empirical data

The accumulation of paid losses in a run-off triangle

	Home owners/Farm owners insurance											
	Development year											
Accident year	Premiums	0	1	2	3	4	5	6	7	8	9	
1988	94,070	35,605	52,161	54,137	55,539	56,476	57,403	57,815	58,104	58,225	58,396	
1989	95,508	44,730	63,955	65,957	69,086	67,497	69,923	70,510	70,676	70,704		
1990	92,420	36,486	50,508	53,424	55,501	56,295	56,790	57,116	57,243			
1991	101,766	48,418	64,347	68,343	69,696	70,595	70,847	71,209				
1992	112,464	96,567	68,343	135,037	136,941	137,795	138,297					
1993	128,460	61,010	80,471	84,079	85,744	86,502						
1994	143,295	78,147	95,470	100,343	103,247							
1995	150,882	67,096	83,911	87,414								
1996	121,487	75,116	90,978									
1997	32,694	10,779										

	Private passenger - auto liability/medical insurance												
	Development year												
Accident year	Premiums	0	1	2	3	4	5	6	7	8	9		
1988	906,236	224,230	444,587	550,263	614,499	646,555	661,208	670,101	674,655	676,514	679,176		
1989	964,751	243,325	479,993	597,425	662,098	697,533	710,619	716,832	719,696	721,908			
1990	1,015,900	256,357	510,765	634,461	705,322	738,529	752,960	761,574	767,622				
1991	1,117,065	276,302	549,534	687,614	759,545	792,495	807,148	815,227					
1992	1,238,859	318,085	638,439	790,579	863,181	904,970	922,784						
1993	1,362,581	361,131	719,340	871,564	949,251	991,851							
1994	1,522,338	413,286	802,548	968,688	1049,053								
1995	1,704,342	463,972	876,510	1047,437									
1996	1,901,566	509,094	945,440										
1997	2,161,063	584,107											

EA Valdez (MSU) and Priyantha (UConn)

Some works on loss reserving

- On single lines of business:
 - Mack (1993). "Distribution-free calculation of the standard error of chain-ladder reserve estimates." ASTIN Bulletin 23 (2): 213-225.
 - Taylor (2000). "Loss Reserving: An Actuarial Perspective." Kluwer Academic Publishers.
 - England and Verrall. (2002). "Stochastic Claims Reserving in General Insurance." British Actuarial Journal 8 (3): 443-518.
- On several lines of business:
 - Ajne (1994). "Additivity of chain-ladder projections." ASTIN Bulletin 24 (2): 313-318.
 - Braun (2004). "The prediction error of the chain ladder method applied to correlated run-off triangles." ASTIN Bulletin 34 (2): 399-423.
 - Schmidt, K.D. (2006). "Optimal and additive loss reserving for dependent lines of business." In: Casualty Actuarial Society (CAS) Forum Fall, pp. 319-351.
 - Zhang (2010). "A general multivariate chain ladder model." Insurance: Mathematics and Economics 46: 588-599.
 - Shi and Frees. (2011). "Dependent loss reserving using copulas." ASTIN Bulletin 41: 449-486.
 - Shi, Basu and Meyers. (2012). "A Bayesian log-normal model for multivariate loss reserving." North America Actuarial Journal 16 (1): 29-51.

EA Valdez (MSU) and Priyantha (UConn)

Our approach

Using multivariate longtudinal data framework

- We approached the problem a bit differently by borrowing ideas from multivariate longitudinal data analysis:
 - use of a random effects model to capture dynamic dependency and heterogeneity, and
 - a copula function to incorporate dependency among the response variables.
- Our response variable is a random vector of the form:
 - incremental claims, from the run-off triangles, denoted by $y_{ij,k}$, where we normalized these claims by dividing them with an exposure $\omega_{i,k}$
 - this exposure is the net premiums earned in the *i*-th accident year for the *k*-th line of business
- In effect, we used for responses "incremental loss ratios" to develop the loss run-off triangles.
 - ILRH Incremental loss ratio for Home owners/farm owners
 - ILRP Incremental loss ratio for Private passenger auto liability/medical
 - ILRC Incremental loss ratio for Commercial multiple peril
 - ILRO Incremental loss ratio for Other liability occurrence

Notation

Suppose we have a set of q covariates associated with n subjects collected over T time periods for a set of m response variables.

- Let $y_{it,k}$ denote the responses from i^{th} subject in t^{th} time period on the k^{th} response. By letting $\mathbf{y_{it}} = (y_{it,1}, y_{it,2}, \dots, y_{it,m})'$ for $t = 1, 2, \dots, T$, we can express $\mathbf{Y_i} = (\mathbf{y_{i1}}, \mathbf{y_{i2}}, \dots, \mathbf{y_{iT}})$.
- Covariates associated with the i^{th} subject in t^{th} time period on the k^{th} response can be expressed as $\mathbf{x_{it}} = (\mathbf{x_{it,1}}, \mathbf{x_{it,2}}, \dots, \mathbf{x_{it,m}})$ where $\mathbf{x_{it,k}} = (x_{it1,k}, x_{it2,k}, \dots, x_{itp,k})$ for $k = 1, 2, \dots m$.
- We use α_{ik} to represent the random effects component corresponding to the i^{th} subject from the k^{th} response variable.
- $G(\alpha_{ik})$ represents the pre-specified distribution function of random effect α_{ik} .
- For our purpose, subject *i* is accident year.

EA Valdez (MSU) and Priyantha (UConn)

Key features of our approach

- Obviously, the extension from univariate to multivariate longitudinal analysis.
- Types of dependencies captured:
 - the dependence structure of the response using copulas provides flexibility
 - the intertemporal dependence within subjects and unobservable subject-specific heterogeneity captured through the random effects component provides tractability
- The marginal distribution models:
 - any family of flexible enough distributions can be used
 - choose family so that covariate information can be easily incorporated
- Other key features worth noting:
 - the parametric model specification provides flexibility for inference e.g. MLE for estimation
 - model construction can accommodate both balanced and unbalanced data an important feature for longitudinal data

EA Valdez (MSU) and Priyantha (UConn)

		Increm	ental loss	ratio of	four diffe	rent insur	ance lines			
					Develop	nent year				
Accident year	0 2705	1	2	3	4	5	6	7	8	9
1988	0.3785	0.1760	0.0210	0.0149	0.0100	0.0099	0.0044	0.0031	0.0013	0.0018
	0.2474	0.2432	0.1166	0.0709	0.0354	0.0162	0.0098	0.0050	0.0021	0.0029
	0.1430	0.1229	0.0859	0.0659	0.0481	0.0222	0.0124	0.0131	0.0092	0.0054
1000	0.0267	0.0382	0.0636	0.0522	0.0263	0.0396	0.0353	0.0051	0.0079	0.0030
1989	0.4683	0.2013	0.0210	0.0161	0.0166	0.0088	0.0061	0.0017	0.0003	
	0.2522	0.2453	0.1217	0.0670	0.0367	0.0136	0.0064	0.0030	0.0023	
	0.1939	0.1177	0.0746	0.0534	0.0326	0.0381	0.0129	0.0074	0.0059	
1000	0.0478	0.0561	0.0677	0.0809	0.0622	0.0263	0.0001	0.0046	0.0112	
1990	0.3948	0.1517	0.0316	0.0225	0.0086	0.0054	0.0035	0.0014		
	0.2523	0.2504	0.1218	0.0698	0.0327	0.0142	0.0085	0.0060		
	0.2009	0.1017	0.0274	0.0343	0.0097	0.0140	0.0047	0.0111		
	0.0642	0.0790	0.0549	0.1115	0.0248	0.0457	0.0349	0.0727		
1991	0.4758	0.1565	0.0393	0.0133	0.0088	0.0025	0.0036			
	0.2473	0.2446	0.1236	0.0644	0.0295	0.0131	0.0072			
	0.3115	0.1270	0.0528	0.0187	0.0112	0.0047	0.0017			
	0.1297	0.0548	0.1184	0.0750	0.0474	0.0372	0.0158			
1992	0.8586	0.2998	0.0422	0.0169	0.0076	0.0045				
	0.2568	0.2586	0.1228	0.0586	0.0337	0.0144				
	0.4245	0.1673	0.0257	0.0298	0.0352	0.0192				
	0.2061	0.0736	0.1049	0.0542	0.0252	0.0120				
1993	0.4749	0.1515	0.0281	0.0130	0.0059					
	0.2650	0.2629	0.1117	0.0570	0.0313					
	0.2959	0.1162	0.0346	0.0133	0.0083					
	0.2730	0.3873	0.0973	0.0354	0.0644					
1994	0.5454	0.1209	0.0340	0.0203						
	0.2715	0.2557	0.1091	0.0528						
	0.2602	0.0802	0.0253	0.0140						
	0.1398	0.0852	0.0329	0.0064						
1995	0.4447	0.1114	0.0232							
	0.2722	0.2421	0.1003							
	0.1905	0.0815	0.0448							
	0.1365	0.0915	0.0303							
1996	0.6183	0.1306								
	0.2677	0.2295								
	0.2874	0.1289								
	0.1436	0.0817								
1997	0.3297									
	0.2703									
	0.2231									
	0.0999									

EA Valdez (MSU) and Priyantha (UConn)

Model calibration

x-axis: Development lag and y-axis: Incremental loss ratio

EA Valdez (MSU) and Priyantha (UConn)

Calibrating the model

- We transformed the loss triangle data into a longitudinal framework.
- Calendar year represents the time and each accident year represents a subject.
- This framework allows us to perform multivariate longitudinal data analysis.
- We only have one covariate: the development year.

The following set up allows us to use development year 1 as the base factor.

	D2	D3	D4	D5	D6	D7	D8	D9	D10
Dev.Year 1	0	0	0	0	0	0	0	0	0
Dev.Year 2	1	0	0	0	0	0	0	0	0
Dev.Year 3	0	1	0	0	0	0	0	0	0
Dev.Year 4	0	0	1	0	0	0	0	0	0
Dev.Year 5	0	0	0	1	0	0	0	0	0
Dev.Year 6	0	0	0	0	1	0	0	0	0
Dev.Year 7	0	0	0	0	0	1	0	0	0
Dev.Year 8	0	0	0	0	0	0	1	0	0
Dev.Year 9	0	0	0	0	0	0	0	1	0
Dev.Year 10	0	0	0	0	0	0	0	0	1

EA Valdez (MSU) and Priyantha (UConn)

Fitting the marginals

Marginals	Density	Covariates	Residuals	Line of
	f(y)		R_i	business
Gamma	$\frac{1}{\Gamma(\nu)y} \left(\frac{y\nu}{\mu}\right)^{\nu} e^{(-y\nu/\mu)}$	$\log \mu_i(\mathbf{x}) = \alpha_i + \beta' \mathbf{x}$	$rac{Y_i}{\mu_i({f x})}$	ILRH
Log-normal	$\frac{1}{\sigma\sqrt{2\pi}y}\exp\left[-\frac{(\log(y)-\mu)^2}{2\sigma^2}\right]$	$\mu_i(\mathbf{x}) = \alpha_i + \beta' \mathbf{x}$	$\frac{\log(Y_i) - \mu_i(\mathbf{x})}{\sigma}$	ILRP, ILRC
Weibull	$\frac{\kappa}{\lambda} \left(\frac{y}{\lambda}\right)^{\kappa-1} e^{-(y/\kappa)^{\kappa}}$	$\log \lambda_i(\mathbf{x}) = \alpha_i + \beta' \mathbf{x}$	$\frac{Y_i}{\lambda_i(x)}$	ILRO

Marginals

Fitted models for the various marginals

						Lines of	Business					
		ILRH			ILRP			ILRC			ILRO	
	Gamı	ma distribut	ion	Log-no	rmal distrib	ution	Log-normal distribution			Weib	ull distribut	ion
Parameter	Estimate	Std Error	p-val	Estimate	Std Error	p-val	Estimate	Std Error	p-val	Estimate	Std Error	p-val
Covariates												
Dev.Year 1	-	-	-	-	-	-	-	-	-	-	-	-
Dev.Year 2	-1.0997	0.1435	0.0000	-0.0479	0.0451	0.2936	-0.7626	0.1947	0.0003	-0.1771	0.2835	0.5356
Dev.Year 3	-2.8077	0.1480	0.0000	-0.8103	0.0466	0.0000	-1.7508	0.2023	0.0000	-0.5871	0.2801	0.0420
Dev.Year 4	-3.3975	0.1540	0.0000	-1.4253	0.0486	0.0000	-2.1746	0.2113	0.0000	-0.7229	0.2983	0.0196
Dev.Year 5	-3.9561	0.1621	0.0000	-2.0632	0.0511	0.0000	-2.5806	0.2229	0.0000	-1.1480	0.3095	0.0006
Dev.Year 6	-4.3969	0.1760	0.0000	-2.9075	0.0544	0.0000	-2.8066	0.2383	0.0000	-1.3550	0.3331	0.0002
Dev.Year 7	-4.7331	0.1859	0.0000	-3.5022	0.0589	0.0000	-3.7751	0.2579	0.0000	-1.6428	0.3670	0.0001
Dev.Year 8	-5.4997	0.2112	0.0000	-4.0707	0.0663	0.0000	-3.3521	0.2900	0.0000	-1.3261	0.4192	0.0029
Dev.Year 9	-6.4610	0.2564	0.0000	-4.7769	0.0772	0.0000	-3.8281	0.3451	0.0000	-2.5145	0.4739	0.0000
Dev.Year 10	-5.6530	0.3411	0.0000	-4.5198	0.1074	0.0000	-4.1785	0.4649	0.0000	-3.6613	0.6379	0.0000
Intercept	-0.6969	0.1002	0.0000	-1.3467	0.0320	0.0000	-1.4181	0.1573	0.0000	-1.9998	0.1980	0.0000
Marginals												
ν	6.3380	1.2835	0.0000	-	-	-	-	-	-	-	-	-
σ	-	-	-	0.0980	0.0100	0.0000	0.4207	0.0436	0.0000	-	-	-
κ	-	-	-	-	-	-	-	-	-	1.7299	0.2081	0.0000
Random effect												
σ_{α}	0.0561	0.0967	0.5646	0.2651	0.0870	0.0039	0.2651	0.0870	0.0039	0.2042	0.1158	0.0850

EA Valdez (MSU) and Priyantha (UConn)

Fitted models Marginals

Graphical diagnostics - ILRH

EA Valdez (MSU) and Priyantha (UConn)

la

Graphical diagnostics - ILRP

EA Valdez (MSU) and Priyantha (UConn)

Graphical diagnostics - ILRC

EA Valdez (MSU) and Priyantha (UConn)

Graphical diagnostics - ILRO

EA Valdez (MSU) and Priyantha (UConn)

Investigating the time dependence

• Correlation between y_{i1k} and y_{i2k} :

$$\mathsf{Corr}(y_{i1k}, y_{i2k}) = \frac{\mathsf{Cov}(y_{i1k}, y_{i2k})}{\sqrt{\mathsf{Var}(y_{i1k})\mathsf{Var}(y_{i2k})}}$$

where we have

 $\mathsf{Cov}(y_{i1k}, y_{i2k}) = \mathsf{E}(\mathsf{Cov}(y_{i1k}, y_{i2k}) | \alpha_{ik}) + \mathsf{Cov}(\mathsf{E}(y_{i1k} | \alpha_{ik}), \mathsf{E}(y_{i2k} | \alpha_{ik}))$

• Under the conditional independence:

$$\mathsf{Cov}(y_{i1k}, y_{i2k}) = \mathsf{Cov}(\mathsf{E}(y_{i1k}|\alpha_{ik}), \mathsf{E}(y_{i2k}|\alpha_{ik}))$$

• $Var(y_{ijk})$ can be expressed as:

$$\mathsf{Var}(y_{ijk}) = \mathsf{E}(\mathsf{Var}(y_{ijk}|\alpha_{ik})) + \mathsf{Var}(\mathsf{E}(y_{ijk}|\alpha_{ik}))$$

EA Valdez (MSU) and Priyantha (UConn)

Serial correlations of the response variables

	CY 6	CY 7	CY 8	CY 9
CY 10	0.788	0.825	0.845	0.888
CY 9	0.817	0.841	0.888	
CY 8	0.839	0.883		
CY 7	0.879			

	CY 6	CY 7	CY 8	CY 9	
CY 10	0.855	0.912	0.928	0.909	
CY 9	0.906	0.923	0.904		
CY 8	0.914	0.896			
CY 7	0.885				

ILRC								
	CY 6	CY 7	CY 8	CY 9				
CY 10	0.630	0.669	0.703	0.773				
CY 9	0.642	0.692	0.764					
CY 8	0.667	0.757						
CY 7	0.744							

	CY 6	CY 7	CY 8	CY 9	
CY 10	0.110	0.123	0.108	0.161	
CY 9	0.081	0.101	0.099		
CY 8	0.069	0.095			
CY 7	0.099				

Foundary Control of Co

ILRH ILRP ILRC ILRO

Note: The upper part gives the loss ratios from raw data, while the lower part as the residuals after fitting marginals.

EA Valdez (MSU) and Priyantha (UConn)

Correlation matrix

Estimates for various copula models

• Family of Archimedean copulas:

	Parameter	Standard			
Copulas	estimates	error	p-value	AIC	BIC
Clayton	0.1499	0.0566	0.0106	447.8156	449.8229
Frank	1.4907	0.4284	0.0010	441.6951	443.7024
Gumbel	1.1335	0.0526	0.0141	447.8317	449.8390

Family of elliptical copulas

	No	rmal copula		t-copula			
Parameter	Estimate	Std Error	p-val	Estimate	Std Error	p-val	
r_{12}	0.0746	0.1289	0.5656	0.0797	0.1326	0.5506	
r_{13}	0.3472	0.0963	0.0007	0.3429	0.0984	0.0011	
r_{14}	-0.0563	0.1182	0.6362	-0.0439	0.1227	0.7219	
r_{23}	0.3126	0.0969	0.0022	0.3201	0.0990	0.0022	
r_{24}	0.5309	0.0785	0.0000	0.5290	0.0816	0.0000	
r_{34}	0.0282	0.1005	0.7801	0.0404	0.1041	0.6998	
df	-	-	-	75.9600	80.5460	0.3504	
AIC		426.9003			429.5532		
BIC		438.9443			443.6046		

Here, r_{ij} represent the correlation between i^{th} and j^{th} insurance lines. 1: ILRH. 2: ILRP. 3: ILRC and 4: ILRO

EA Valdez (MSU) and Privantha (UConn)

Using pp-plots for copula validation

EA Valdez (MSU) and Privantha (UConn)

Correlated Loss Triangles

Beijing Copula 2014 25 / 32 Prediction estimates of reserves Normal copula

Reserve estimates by accident year - Normal copula

• By line of business

	ILRH			ILRP I			ILRC	ILRC		ILRO		
Accident	Lower	Predicted	Upper	Lower	Predicted	Upper	Lower	Predicted	Upper	Lower	Predicted	Upper
Year	Bound	Value	Bound	Bound	Value	Bound	Bound	Value	Bound	Bound	Value	Bound
-												
1989	91	167	263	2,316	2,749	3,232	93	237	474	18	92	205
1990	127	234	368	4,324	5,132	6,036	52	134	269	28	145	323
1991	252	466	732	8,945	10,629	12,505	94	241	480	92	475	1,056
1992	549	1,010	1,578	18,170	21,552	25,315	126	309	603	160	823	1,828
1993	1,053	1,945	3,054	36,334	43,180	50,754	155	400	794	343	1,764	3,903
1994	1,917	3,541	5,557	83,277	98,835	116,148	231	593	1,182	1,992	10,294	22,857
1995	3,388	6,248	9,803	183,253	217,781	255,976	366	942	1,884	3,211	16,662	37,105
1996	4,703	8,701	13,674	390,883	464,283	545,702	545	1,399	2,793	4,737	24,486	54,173
1997	4,222	7,783	12,180	898,051	1,066,427	1,253,355	1,129	2,913	5,825	7,338	37,960	84,451

• Combined lines of business

Calendar	Avg - 2×StdDev	Lower	Predicted	Upper	Avg + 2×StdDev
Year		Bound	Value	Bound	
1989	2,458	2,651	3,245	3,938	4,032
1990	4,401	4,695	5,646	6,732	6,891
1991	9,103	9,749	11,811	14,183	14,520
1992	18,475	19,692	23,693	28,254	28,911
1993	36,732	39,167	47,289	56,537	57,845
1994	83,316	91,068	113,262	139,929	143,209
1995	181,821	196,740	241,633	294,272	301,445
1996	382,850	410,864	498,869	600,658	614,888
1997	866,081	924,983	1,115,084	1,331,428	1,364,087
1994 1995 1996 1997	83,316 181,821 382,850 866,081	91,068 196,740 410,864 924,983	241,633 498,869 1,115,084	294,272 600,658 1,331,428	143,209 301,445 614,888 1,364,087

EA Valdez (MSU) and Priyantha (UConn)

Prediction estimates of reserves Frank copula

Reserve estimates by accident year - Frank copula

• By line of business

		ILRH			ILRP		ILRC			ILRO		
Accident	Lower	Predicted	Upper	Lower	Predicted	Upper	Lower	Predicted	Upper	Lower	Predicted	Upper
Year	Bound	Value	Bound	Bound	Value	Bound	Bound	Value	Bound	Bound	Value	Bound
-												
1989	91	167	263	2,315	2,748	3,230	91	237	473	17	92	203
1990	128	234	368	4,323	5,131	6,030	52	134	268	28	145	322
1991	254	466	733	8,953	10,626	12,489	93	241	482	91	474	1,052
1992	551	1,010	1,588	18,157	21,546	25,323	120	309	619	156	821	1,822
1993	1,061	1,945	3,056	36,355	43,157	50,734	154	399	798	336	1,759	3,896
1994	1,931	3,541	5,563	83,228	98,794	116,129	230	593	1,187	1,956	10,270	22,750
1995	3,411	6,253	9,830	183,425	217,759	255,954	365	945	1,887	3,192	16,661	36,954
1996	4,745	8,701	13,671	391,010	464,106	545,569	542	1,399	2,799	4,662	24,450	54,297
1997	4,251	7,785	12,237	897,944	1,066,094	1,253,066	1,124	2,915	5,842	7,234	37,878	83,976

Combined lines of business

Accident	Avg - 2×StdDev	Lower	Predicted	Upper	Avg + 2×StdDev
Year		Bound	Value	Bound	
1989	2,474	2,670	3,243	3,916	4,012
1990	4,426	4,712	5,644	6,700	6,863
1991	9,198	9,823	11,808	14,071	14,417
1992	18,552	19,755	23,687	28,127	28,821
1993	37,021	39,430	47,259	56,117	57,497
1994	85,213	92,386	113,197	137,827	141,181
1995	185,643	199,355	241,617	290,439	297,590
1996	388,967	414,736	498,655	593,709	608,344
1997	877,550	931,686	1,114,673	1,318,771	1,351,797

EA Valdez (MSU) and Priyantha (UConn)

Model comparison

We compared the results from the above models with the multivariate chain ladder method.

Accident	Multivariate	Normal	Frank	Independence
year	chain ladder	copula	copula	model
1989	3,463	3,245	3,243	3,464
1990	5,858	5,646	5,644	5,858
1991	11,978	11,811	11,808	11,978
1992	25,938	23,693	23,687	25,713
1993	50,797	47,289	47,259	50,817
1994	112,001	113,262	113,197	112,096
1995	234,878	241,633	241,617	232,873
1996	483,958	498,869	498,655	481,088
1997	1,129,869	1,115,084	1,114,673	1,124,843
Total Reserve	2,058,740	2,060,532	2,059,783	2,048,730

EA Valdez (MSU) and Priyantha (UConn)

The predictive distributions

The predictive distributions

Total Reserves

Normal copula

Frank copula

EA Valdez (MSU) and Priyantha (UConn)

1500000

1.5e-06 -

1.0e-06 -

5.0e-07 -

0.0e+00

Density

Correlated Loss Triangles

3000000

2500000

Total Predicted Losses

- continued

Normal copula

Frank copula

EA Valdez (MSU) and Priyantha (UConn)

The predictive distributions

Model comparison

Concluding remarks

- This work is still on its premature stage.
- Our work intends to provide addition to the growing literature on modeling dependence on run-off triangles for multiple lines of business:
 - time dependence
 - dependence across the various lines of business
- We wish to exploit the use of multivariate longitudinal data analysis.
 - There is a growing literature on the statistical methods for multivariate longitudinal data.
 - There is also a growing literature on the use of such methodology in disciplines such as biostatistics.
- Our future research work includes many things including:
 - improving model selection criteria; and
 - understanding the predictions arising from various models by doing some sensitivity analysis.