4.4. Generalized Sources

Section Objective(s):
• The Dirac’s Delta.
• Main Properties.
• Applications.
• The Impulse Response Function.

4.4.1. The Dirac Delta.

Definition 4.4.1. The Dirac delta generalized function is the limit

\[\delta_n(t) = \lim_{n \to \infty} \delta_n(t), \]

for every fixed \(t \in \mathbb{R} \) of the sequence functions \(\{\delta_n\}_{n=1}^{\infty} \).

Remark: The sequence of bump functions introduced above can be rewritten as follows,

\[\delta_n(t) = \begin{cases}
0, & t < 0 \\
0, & 0 \leq t < \frac{1}{n} \\
\infty, & t \geq \frac{1}{n}.
\end{cases} \]

We then obtain the equivalent expression,

\[\delta(t) = \begin{cases}
0, & t \neq 0, \\
\infty, & t = 0.
\end{cases} \]

Remark: There are infinitely many sequences \(\{\delta_n\} \) of functions with the Dirac delta as their limit as \(n \to \infty \).

Remarks:
(a) The Dirac delta is \underline{on the domain} \underline{domain}.
(b) The Dirac delta is \underline{on \underline{domain}}.

Theorem. Every function in the sequence \(\{\delta_n\} \) above satisfies

\[\int_{c}^{c+1} \delta_n(t) \, dt = 1. \]
4.4.2. Main Properties.

Remark: We use ________ to define operations on Dirac’s deltas.

Definition 4.4.2. We introduce the following operations on the Dirac delta:

\[f(t) \delta(t - c) + g(t) \delta(t - c) = \]

\[\int_a^b \delta(t - c) \, dt = \]

\[L[\delta(t - c)] = \]

Theorem 4.4.3. For every \(c \in \mathbb{R} \) and \(\epsilon > 0 \) holds,

\[\text{□} \]

Proof of Theorem 4.4.3:
Theorem 4.4.4. If f is continuous on (a,b) and $c \in (a,b)$, then

\[
\int_{a}^{b} f(t) \delta(t-c) \, dt = f(c).
\]

Proof of Theorem 4.4.4:
Theorem 4.4.5. For all $s \in \mathbb{R}$ holds

$$\mathcal{L}[\delta(t - c)] = \begin{cases} e^{-cs} & \text{for } c \geq 0, \\ 0 & \text{for } c < 0. \end{cases}$$

Proof of Theorem 4.4.5:
4.4.3. Applications of the Dirac Delta.

Remarks:

(a) Dirac’s delta generalized function is useful to describe

………

(b) An impulsive force transfers a……………………………………………………………………………………

………

(c) For example, a pendulum at rest that is hit by a hammer.
Example 1: Use Newton’s equation of motion and Dirac’s delta to describe the change of momentum when a particle is hit by a hammer.

Solution:
4.4.4. The Impulse Response Function.

Definition 4.4.6. The *impulse response function* at the point $c \geq 0$ of the linear operator

\[
L(y) = y'' + a_1 y' + a_0 y,
\]

with a_1, a_0 constants, is the solution y_δ of

\[
L(y_\delta) = \delta(t - c), \quad y_\delta(0) = 0, \quad y'_\delta(0) = 0.
\]

Theorem 4.4.7. The function y_δ is the impulse response function at $c \geq 0$ of the constant coefficients operator $L(y) = y'' + a_1 y' + a_0 y$ iff holds

\[
L[y] = e^{-cs} p(s)
\]

where the characteristic polynomial $p(s)$ of L.

Remark: The impulse response function y_δ at $c = 0$ satisfies

\[
L[y] = e^{-cs} p(s)
\]

Proof of Theorem 4.4.7:
Example 2: Compare the solutions to the following two IVPs, by showing that their Laplace Transforms are the same.

\[y'' + a_1 y' + a_0 y = \delta(t), \quad y(0) = 0, \quad y'(0) = 0. \]

and

\[y'' + a_1 y' + a_0 y = 0, \quad y(0) = 0, \quad y'(0) = 1. \]

Provide physics-based explanation of why these solutions coincide.

Example 3: Find the solution \(y \) to the initial value problem

\[y'' - y = \delta(t - 3), \quad y(0) = 0, \quad y'(0) = 0. \]

Solution: