0. Ch3.1 A trivial proof and a vacuous proof (Reading assignment)
1. Ch3.2 Direct proofs
2. Ch3.3 Proof by contrapositive
3. Ch3.4 Proof by cases
4. Ch3.5 Proof evaluations (Reading assignment)

Ch 3.2: Direct proofs

A direct proof is a way of showing that a given statement is true or false by using existing lemmas and theorems without making any further assumptions. To prove statements of the form "if P, then Q ",

Assume that the statement P is true and directly derive the conclusion that the statement Q is true.

We can use the following properties of integers without justification.

- The sum (difference, product) of every two integers is an integer.
- The product of two negative integer is positive.
- Every integer is of the form 2 m or $2 \mathrm{~m}+1$, where $m \in \mathbb{Z}$.

Definition: An integer x is called even (respectively odd) if there is an integer k for which $\mathrm{x}=2 \mathrm{k}$ (respectively $2 \mathrm{k}+1$).

Example. If n is an even integer, then $7 n+4$ is also an even integer.
Write a hypothesis and a conclusion first and fill out the body of the proof which is a bridge of logical deductions from the hypothesis to the conclusion.

Proof.

Exercises

1. Let $n \in \mathbb{Z}$. Prove that if $1-n^{2}>0$, then $3 n-2$ is an even integer.
2. Let $S=\{0,1,2\}$ and let $n \in S$. Prove that if $(n+1)^{2}(n+2)^{2} / 4$ is even, then $(n+2)^{2}(n+3)^{2} / 4$ is even.

Proofs Involving Inequalities

(A1) For all real numbers a, b, c, if $a \leq b$ and $b \leq c$ then $a \leq c$.
(A2) For all real numbers a, b, c, if $a \leq b$ then $a+c \leq b+c$.
(A3) For all real numbers a, b, c, if $a \leq b$ and $0 \leq c$ then $a c \leq b c$.
Prove the statements below using A1-A3, together with any basic facts about equality $=$.
(1) For all real numbers a, b, if $0 \leq a$ and $a \leq b$ then $a^{2} \leq b^{2}$.
(2) For all real numbers a, if $a \leq 0$ then $0 \leq-a$.

Working Backwards

Theorem (Inequality between arithmetic and geometric mean.)

$$
\text { If } a, b \in \mathbb{R} \text { are such that } a \geq 0 \text { and } b \geq 0, \text { then } \frac{a+b}{2} \geq \sqrt{a b}
$$

Scratch work:

1. Start with the inequality you are asked to prove.
2. Simplify it as much as possible until you arrive at a statement that is obviously true.

Formal Proof:

3. In order to write formal proof, now start from the obviously true statement.
4. Use your previous work to guide you on how to arrive at the desired inequality. Proof:

Common mistakes.

1. What is wrong with this proof?

(1) Assume $a=b$.
(2) Multiplying both sides by $b, a b=b^{2}$.
(3) Subtracting a^{2} from both sides, $a b-a^{2}=b^{2}-a^{2}$.
(4) Factoring $a(b-a)=(b+a)(b-a)$.
(5) Dividing by $b-a, a=b+a$.
(6) Using (1), $a=2 a$.
(7) Dividing by $a, 1=2$.
2. Circular argument Prove if n^{3} is even then n is even.

Proof:

Assume n^{3} is even.
Then $\exists k \in \mathbb{Z}$ such that $n^{3}=8 k^{3}$.
It follows that $n=\left(8 k^{3}\right)^{1 / 3}=2 k$.
Therefore n is even.

All statements in the proof are true but is the proof correct?

Ch 3.3: Proof by contrapositive

It is a direct proof but we start with the contrapositive because

$$
P \Longrightarrow Q \text { is equivalent to } \sim(Q) \Longrightarrow \sim(P) .
$$

Why do we prove the contrapositive of the implication instead of the original implication?

Example. Prove: If n^{3} is even then n is even.

Definition: Two integers are said to have the same parity if they are both odd or both even.

Theorem: Let $x, y \in \mathbb{Z}$. Then x and y are of the same parity if and only if $x+y$ is even.
Proof.

Exercises

1. Prove that if $5 x-11$ is an even integer, then x is an odd integer.
2. Prove that if $7 x+4$ is even, then $5 x-11$ is odd.
(This problem is a continuation of the previous question. Of course we can prove this statement directly by using the definition of an even and odd integers)
3. Let $\{A, B\}$ be a partition of the set of $S=\{1,2, \cdots, 7\}$, where $A=\{1,4,5\}$. Let $n \in S$. Find the set B and prove that if $\left(n^{2}+3 n-4\right) / 2$ is even, then $n \in A$.

Ch 3.4: Proof by cases

Let a problem of the form

$$
\left(P_{1} \text { or } P_{2} \text { or } \cdots \text { or } P_{n}\right) \Longrightarrow Q
$$

be given, where $P_{1}, P_{2}, \cdots, P_{n}$ are cases.
Show that it is equivalent to the following :

$$
\left(P_{1} \Longrightarrow Q\right) \text { and }\left(P_{2} \Longrightarrow Q\right) \text { and } \cdots \text { and }\left(P_{n} \Longrightarrow Q\right) .
$$

Thus, we need to prove all the clauses are true.

Example: Prove that if $n \in \mathbb{Z}$, then $n^{3}-n$ is even.

Example: Prove " n 2 $\geq n$ for any integer n ".
Proof:

1. How many cases do we need to consider?
2. Explicitly state what we want to prove.
3. If we can prove that all cases are true, we can conclude that $n^{2} \geq n$ for all integers n.
4. Write the final polished form of your proof.

Exercises

1. For $n \in \mathbb{Z}$, prove that $9 n^{2}+3 n-2$ is even.
2. For any integer $n, n^{3}+n$ is an even integer.
3. For $x, y \in \mathbb{R},|x y|=|x||y|$.
4. Prove that for all $x \in \mathbb{R},-5 \leq|x+2|-|x-3| \leq 5$.
5. Prove that if x is a real number such that $\frac{x^{2}-1}{x+2}>0$, then $x>1$ or $-2<x<-1$.

More exercise problems for Chapter 3

Section 3.2

3.2.A Let $n \in \mathbb{N}$. Prove that $1^{2}+2^{2}+\cdots+n^{2}$ is even if n is an integer of the form $n=4 k$ for some integer k.
3.2.B Show that if n is an even integer then either $n=4 k$ or $n=4 k+2$ for some integer k. (Hint: For n to be even means that $n=2 m$ for some integer m. Consider two possibilities for m.)
3.2.C Let $n \in \mathbb{N}$. Prove that $1^{2}+2^{2}+\cdots+n^{2}$ is odd if n is an even integer and $n \neq 4 k$ for any integer k.

Section 3.3

3.3.A Prove the following statements by stating and proving the contrapositive
(a) If n^{2} is an odd integer, then n is an odd integer.
(b) If n^{2} is divisible by 4 , then n is even.
(c) Let a and b be nonnegative real numbers. If $a^{2}<b^{2}$, then $a<b$. (Hint: Use the following property of the real numbers: if $a<b$ and $c>0$, then $a c<b c$.)
(d) Let a and b be nonnegative real numbers and let $n \in \mathbb{N}$. If $a^{n}<b^{n}$, then $a<b$.

Section 3.4

3.4.A Use a proof by cases to prove that every integer is of the form $4 k, 4 k+1,4 k+2$, or $4 k+3$ for some integer k. (Hint: this is similar to 3.2.B above.)
3.4.B Use a proof by cases to prove that if $n=m^{2}$ for some integer m, then $n=4 k$ or $n=4 k+1$ for some integer k.

