2.9: Some Fundamental Properties of Logical Equivalence

Theorem: For statements P, Q, and R, the following properties hold.

- 1. Commutative Laws
 - (1) $P \lor Q \equiv Q \lor P$
 - (2) $P \wedge Q \equiv Q \wedge P$
- 2. Associate Laws
 - (1) $P \lor (Q \lor R) \equiv (P \lor Q) \lor R$
 - (2) $P \wedge (Q \wedge R) \equiv (P \wedge Q) \wedge R$
- 3. Distributive Laws
 - (1) $P \lor (Q \land R) \equiv (P \lor Q) \land (P \lor R)$
 - (2) $P \land (Q \lor R) \equiv (P \land Q) \lor (P \land R)$
- 4. De Morgan's Laws
 - (1) $\sim (P \lor Q) \equiv (\sim P) \land (\sim Q)$ (2) $\sim (P \land Q) \equiv (\sim P) \lor (\sim Q)$

Let us prove 3-(2) and 4-(1) and we leave the remaining parts to do on your own. Prove the logical equivalence using truth tables.

Proof of 3-(2):

Р	Q	R			

Proof of 4-(1):

Р	Q			

Prove that
$$(P \Rightarrow Q) \equiv ((\sim P) \lor Q).$$

Р	Q		

The negation of an implication

Using the fact that
$$(P \Rightarrow Q) \equiv ((\sim P) \lor Q)$$
 and **De Morgan's Laws**, prove
 $(\sim (P \Rightarrow Q)) \equiv (P \land (\sim Q)).$

Proof:

Remark:

- We already proved the logical equivalence of the two statements, $\sim (P \Rightarrow Q)$ and $P \land (\sim Q)$, by using a truth table.
- This class is a writing class. Be careful with all notations!!! "Equal" means equal, that is, "=" is different from " \equiv ".

Example: "If you are an athletic student, you must take MTH299". If this is not true, then it follows that

The negation of a biconditional

Using the fact that
$$(P \iff Q) \equiv ((P \implies Q) \land (Q \implies P))$$
 and **De Morgan's**
Laws, prove
 $\sim (P \iff Q) \equiv (P \land (\sim Q)) \lor (Q \land (\sim P)).$

Proof:

Remark:

- Of course, we can prove the logical equivalence of the two statements, $\sim (P \iff Q)$ and $(P \land (\sim Q)) \lor (Q \land (\sim P))$ by using a truth table.

Example: "If you earned a score of 800 on the math SAT, then you will receive a scholarship, and this is the only way you can receive a scholarship." If this is not true, then it follows that

2.10: Quantified statements

Definition (Universal quantifier): \forall - for all or for each or for every

- " $\forall x \in S, P(x)$ " : For every $x \in S, P(x)$.
 - (i) " $\forall x \in S, P(x)$ " is true if P(x) is true for every $x \in S$.
 - (ii) " $\forall x \in S, P(x)$ " is false if there exist at least one element $x \in S$ such that P(x) is false.
- Express each of the following statements using quantifiers.
 - Every student who registers for MTH299 must take the first midterm exam on February 13, 2014.
 - (ii) The product of any two rational numbers is a rational number.
 - (iii) For all real numbers x, x^2 is nonnegative.
- Express each of the following statements in words.
 - (i) $\forall x, y \in \mathbb{N}, \quad x + y \in \mathbb{N}.$
 - (ii) If $a \in A \Rightarrow a \in B$, $\forall a \in A$, then $A \subseteq B$.

(iii) $\forall a, b \in A = \{x \mid x = 2n + 1, n \in \mathbb{Z}\}, ab \in A.$

Definition (Existential quantifier): \exists - there exists or there exist or for some

- $\exists x \in S, P(x)$: There exists $x \in S$ such that P(x).
- Express each of the following statements using quantifiers.
 - (i) There is a student who didn't turn in an essay homework.
 - (ii) There is no student who skipped the first class.
 - (iii) Rolle's Thm.: Let f be continuous on [a, b] and differentiable on (a, b). If f(a) = f(b), then f'(c) = 0 for some $c \in (a, b)$.
 - (iv) The equation $x^2 2y^2 = 3$ has an integer solution.
- Express each of the following statements in words.
 - (i) f continuous on [a, b] and $f(a) \cdot f(b) < 0 \Rightarrow \exists c \in (a, b)$ such that f(c) = 0.

(ii) $\exists x \in A \Rightarrow A \neq \emptyset$.

(iii)
$$\exists x \in \mathbb{Z}, x^2 = x$$
.

Combining the quantifiers

Express each of the following statements using quantifiers.

- 1. There exists a smallest natural number.
- 2. Every integer is the product of two integers.
- 3. There exists no smallest integer.
- 4. For all real number x, there exists a real number y such that $y = x^2$.
- 5. For any natural number x, there exists an even prime number p larger than x.
- 6. The set B has a lower bound. (That is, there exists a value b such that b is less than or equal to every element x in B.)

Order of \exists and \forall matters!

In each of the following cases explain what is meant by the statement and decide whether it is true or false.

- 1. $\forall x \in \mathbb{Z}, \exists y \in \mathbb{Z} \text{ such that } x + y = 1.$
- 2. $\exists y \in \mathbb{Z}$ such that $\forall x \in \mathbb{Z}, x + y = 1$.

- 3. $\forall x \in \mathbb{Z}, \exists y \in \mathbb{Z} \text{ such that } xy = x.$
- 4. $\exists y \in \mathbb{Z}$ such that $\forall x \in \mathbb{Z}, xy = x$.
- 5. $\lim_{x \to c} f(x) = L \text{ if } \forall \varepsilon > 0 \quad \exists \delta > 0 \text{ such that } 0 < |x c| < \delta \quad \Rightarrow \quad |f(x) L| < \varepsilon.$
- 6. $\lim_{x \to c} f(x) = L \text{ if } \exists \delta > 0 \quad \forall \varepsilon > 0 \text{ such that } 0 < |x c| < \delta \quad \Rightarrow \quad |f(x) L| < \varepsilon.$
- 7. $f: A \to B$ is surjective provided $\forall y \in B, \exists x \in A$ such that f(x) = y.

Existence and Uniqueness: $\exists!$

A symbol ∃!

- " $\exists ! n$ such that ... " means
- (i) **Existence** $(\exists n \text{ such that } \dots)$
- (ii) **Uniqueness** (if n_1 and n_2 both have the given property, then $n_1 = n_2$).

Examples

Prove the following: (we will revisit these problems in Ch.5)

- 1. $\forall x \in \mathbb{Q} \setminus \{0\}, \exists y \in \mathbb{Q} \text{ such that } xy = 1.$
- 2. Let $f : [0,1] \to \mathbb{R}$ be continuous and strictly increasing with $f(0) \cdot f(1) < 0$. Then $\exists ! x \in [0,1]$ such that f(x) = 0.

Examples: Express in terms of quantifiers

- (i) There are at least two black kittens.
- (ii) There are at least three people who do not like ice cream.

How can you generalize the above strategy?

- (iii) There are at least n nonzero elements in the set A.
- (iv) For every element in the set B there are at least n elements in the set A similar to it.

Interpreting Multiple Quantifiers

Examples Are these statements true or false? Prove your claim. If the statement is not true, provide a *counterexample* to prove your claim.

- 1. $\forall x \in \mathbb{Z}, \exists y \in \mathbb{Z} \text{ such that } x + y = 1.$
- 2. $\forall x \in \mathbb{Z}, \exists y \in \mathbb{Z} \text{ such that } xy = 1.$
- 3. $\exists y \in \mathbb{Z}$ such that $\forall x \in \mathbb{Z}, xy = x$.

Discuss what the following are actually saying:

4. $\forall x \in \mathbb{R}, \forall \varepsilon > 0, \exists q \in \mathbb{Q} \text{ such that } |x - q| < \varepsilon.$

5. $\forall x \in \mathbb{R}, \forall \varepsilon > 0, \exists q \in \mathbb{N} \text{ such that } |x - q| < \varepsilon.$

Negation of \exists and \forall :

What is the negation of the following statements?

- 1. "All horses are white."
- 2. "There were some students who missed class last Friday."
- 3. $\forall x \in \mathbb{Z}, \exists y \in \mathbb{Z} \text{ such that } x + y = 1.$

4. $\exists y \in \mathbb{Z}$ such that $\forall x \in \mathbb{Z}, xy = x$.

Theorem 1

 $\sim (\forall x, P(x)) \equiv \exists x, \sim (P(x))$

Theorem 2

 $\sim (\exists x, P(x)) \equiv \forall x, \sim (P(x))$

* What would be the negation of $\exists x \forall y \exists z, P(x, y, x)$?

To negate a general statement with quantifiers:

- (a) Maintaining the order of the quantified segments, change each (∀...) segment into a (∃... such that) segment;
- (b) Change each $(\exists ... \text{ such that})$ segment into a $(\forall ...)$ segment;
- (c) Negate the final statement

Examples: Negate the following statements:

- 1. $\exists y \in \mathbb{Z}$ such that $\forall x \in \mathbb{Z}, x + y = 1$.
- 2. $\forall x \in \mathbb{Z}, \exists y \in \mathbb{Z} \text{ such that } xy = x.$
- 3. $\lim_{x \to c} f(x) = L \text{ if } \forall \varepsilon > 0 \quad \exists \delta > 0 \text{ such that } 0 < |x c| < \delta \quad \Rightarrow \quad |f(x) L| < \varepsilon. \text{ This is a formal definition of continuity of a function } f \text{ at a point } x = c.$
- 4. $\lim_{n \to \infty} a_n = L$ if $\forall \varepsilon > 0 \quad \exists N \in \mathbb{R}$ such that $\forall n > N$, $|a_n L| < \varepsilon$. This is a formal definition of the limit of sequences. We will revisit it in Ch.12.1

5. $f: A \to B$ is surjective provided $\forall y \in B \exists x \in A$ such that f(x) = y. This is a formal definition of a surjective function. We will revisit it in Ch.9.3

Example: Prove that $\forall x \in \mathbb{N}, \ \nexists y \in \mathbb{R} \setminus \{x\}$ such that y is closest to x.

Equivalent to: $\forall x \in \mathbb{N}$, $\operatorname{not}(\exists y \in \mathbb{R} \setminus \{x\} \text{ such that } \forall z \in \mathbb{R} \setminus \{x\}, |x - y| < |x - z|)$

If we restate the previous sentence without "not", that is, we negate the previous sentence, we need to show that

 $\forall x \in \mathbb{N},$

 $\forall y \in \mathbb{R} \setminus \{x\} \exists z \in \mathbb{R} \setminus \{x\}$ such that |x - y| > |x - z|

Proof:

Negation of $\exists!$

- (Review) The notation $\exists ! n$ indicates
 - (i) Existence $(\exists n \text{ such that } . . .)$

AND

(ii) Uniqueness (if $n_1 \in Z$ and $n_2 \in Z$ both have the given property, then $n_1 = n_2$).

By using the De Morgan's Law "~ $(P \land Q) \equiv (\sim (P) \lor \sim (Q))$ "

- Negation of unique existence: "not \exists !"
 - (i) There does not exist n such that . . .

OR

(ii) It is not unique

Examples Negate the following

1. $\forall x \in \mathbb{Q} \setminus \{0\}, \exists ! y \in \mathbb{Q} \text{ such that } xy = 1.$

2. Let $f : [0,1] \to$ be continuous and strictly decreasing with $f(0) \cdot f(1) < 0$. Then $\exists ! x \in [0,1]$ such that f(x) = 0.