Math 299

Lecture 5: Sections 2.6 and 2.7. Biconditional, Converse, Tautologies and Contradictions

Converse

The statement $B \Rightarrow A$ is the <u>converse</u> of the statement $A \Rightarrow B$.

Give an example for each of the following cases:

- The statement is true and its converse is false.
- The statement is false and its converse is true.
- Both the statement and its converse are true.
- Both the statement and its converse are false.

Relationship between a statement, its $\underline{inverse}$, its $\underline{converse}$ and its contrapositive.

If-and-only-if (biconditional) statements

If both $A \Rightarrow B$ and $B \Rightarrow A$ are true, we write $A \Leftrightarrow B$

- "A and B are equivalent"
- "A holds if and only if B holds"
- Abbreviation: "A iff B"
- "A is necessary and sufficient for B"

Truth table for $A \iff B$

A	В	$A \Rightarrow B$	$B \Rightarrow A$	$(A \Rightarrow B) \land (B \Rightarrow A)$	$A \iff B$
Т	Т				
T	F				
F	Т				
F	F				

Proving if-and-only-if statements

• Let $x, y \in \mathbb{R}$. Then $(x + y)^2 = x^2 + y^2$ if and only if xy = 0.

• The integer n is odd if and only if n + 1 is even.

• The natural number n is odd if and only if n^2 is odd.

• A rectangle with perimeter 4a is a square if and only if its area is a^2 .

• (Challenge.) Define the Euclidean norm of $\mathbf{x} = (x_1, x_2, ..., x_n) \in \mathbb{R}^n$ by $||\mathbf{x}|| = \sqrt{x_1^2 + ... + x_n^2}$. Then $||\mathbf{x}|| = 0$ if and only if $(x_1, x_2, ..., x_n) = (0, 0, ..., 0)$.

Tautology

Definition: Tautology is a compound statement that is always true, regardless of the truth value of the individual statements.

Examples:

- 1. $P \iff P$
- 2. $Q \lor (\sim Q)$

Prove that $(P \lor Q) \lor (P \lor (\sim Q))$ is a tautology.

Р	Q	$\sim Q$	$P \lor Q$	$P \lor (\sim Q)$	$(P \lor Q) \lor (P \lor (\sim Q))$
Τ	Т				
T	F				
F	Т				
F	F				

Contradiction

Definition: Contradiction is a compound statement that is always false, regardless of the truth value of the individual statements.

Examples:

- 1. $P \iff (\sim P)$
- 2. $Q \wedge (\sim Q)$

Theorem: A statement S is a tautology if and only if its negation is a contradiction.