Math 299Lecture 4: Chapter 2. Logic. Sections 2.4 and 2.5: Implications

"If ..., then ..." Statements

Definition: Statements of the form "If statement A is true, then statement B is true." are called implications. Mathematically this is denoted by $A \Rightarrow B$.

$$
A \Rightarrow B
$$

- "If A then B"
- "A implies B"
- "A only if B"
- "B if A"
- "B whenever A"
- "A is sufficient for B "
- "B is necessary for A"

Examples: Determine which statement constitutes the hypothesis (assumption) and which statement is the conclusion.

1. If $x \in \mathbb{N}$, then $2 x$ is even.
2. If pigs could fly, then I am on Mars.
3. The value of $x+y$ is even whenever x and y are odd.
4. I am going to carry an umbrella, only if it rains.

- If I am going to carry an umbrella, then it means it is going to rain.

5. $x^{2}<1$ whenever $x<1$. Note that this is a false statement!

When is the statement $A \Rightarrow B$ true?

Is the following statement true?
If pigs could fly, then I am on Mars.
" $A \Rightarrow B$ " says nothing about whether A or B are true or false.
The following cases are possible implications to be true.

- A - true and B - true
- A - false and B - false
- A - false and B - true

If the assumption is false, the conclusion could be anything!
Give an example illustrating each of the above cases.

Truth table for $A \Rightarrow B$.

A	B	$A \Rightarrow B$	$\sim(A \Rightarrow B)$	$\sim B$	$A \wedge(\sim B)$
T	T				
T	F				
F	T				
F	F				

What is the negation of $A \Rightarrow B$?

Negation of if-then statement

A: "I do well in college." B: "I will get a good job."

- If A then B :
- not(If A then B) :

Theorem: The negation of $A \Rightarrow B$ is equivalent to A and (not $B)$.

$$
(A \Rightarrow B) \equiv(A \wedge(\sim B))
$$

Restate in the form of an "if-then" statement and negate the following statements.
(1) "The room is quiet, if the door is closed."
(2) "I am productive in the morning, only if I have slept well."
(3) "I am an adult, if I am 30 years old."
(4) "In order to have a driver's license, it is necessary to be at least 16 years old."
(5) "To pass MTH299, it is sufficient to have 90% on all tests and assignments."

Open Sentences

Let

$$
P(x, y): x^{2}+y^{2}=4 \text { and } Q(x, y): \frac{y}{x} \in \mathbb{Z}
$$

be open sentences with domain $A \times B$, where $A=\{1,2\}$ and $B=\{0, \sqrt{3}\}$.
Determine for what elements in the domain the statement $P(x, y) \Rightarrow Q(x, y)$ is true.

Inverse of an if-then statement

"If I am 30 years old, then I am an adult."

The inverse of the above statement is:
"If I am not 30 years old, then I am not an adult."

Theorem: The inverse of the implication "If A, then B." is the implication "If not(A), then $\operatorname{not}(\mathrm{B}) . "$

Is the inverse, in general, equivalent to the original statement?

Think of an example when a statement and its inverse are equivalent and when they are not.

Necessary Conditions

"In order to pass MTH299, it is necessary that a student completes most daily homework assignments."

What is the assumption and what is the conclusion?

Definition: A necessary condition is one that must hold in order for the result to be true. It does not guarantee that the result is true.

```
    A is necessary for B is equivalent to B is true only if A is true,
which is equivalent to }B=>A\mathrm{ .
    x\in(-1,1) is necessary for }\mp@subsup{x}{}{2}-1<0
```


Sufficient Conditions

"To pass MTH299, it is sufficient to have 90% on all tests and assignments."
What is the assumption and what is the conclusion?

Definition: A sufficient condition is one such that if it holds, the result is guaranteed to be true. The conclusion may be true even if the condition is not satisfied.

A is sufficient for B is equivalent to $A \Rightarrow B$.

$x \in(0,1)$ is sufficient for $x^{2}-1<0$.
$x \in(-1,1)$ is sufficient for $x^{2}-1<0$.

Necessary and Sufficient Conditions

Fill in the blank with necessary, sufficient or necessary and sufficient.

1. $x>1$ is \qquad for $x^{2}>1$
2. $x \in \mathbb{N}$ is \qquad for $x \geq 0$
3. $|x|>1$ is \qquad for $x^{2}>1$
4. "Mary earned an A in MTH299." is \qquad for "Mary passed MTH299."
5. "The function f is continuous at $x=c$." is \qquad for "The function f has a derivative at $x=c$."

Contrapositive

$$
A \Rightarrow B
$$

"If I am 30 years old, then I am an adult."
We saw that the inverse of the above statement is:

$$
\operatorname{not}(A) \Rightarrow \operatorname{not}(B)
$$

"If I am not 30 years old, then I am not an adult."
and it is not equivalent to the original one.

Can you construct an implication using not(A) and $\operatorname{not}(\mathrm{B})$, which is equivalent to the original one?

The contrapositive of the statement $A \Rightarrow B$ is $\operatorname{not}(\mathrm{B}) \Rightarrow \operatorname{not}(\mathrm{A})$.

A	B	$A \Rightarrow B$	$\sim A$	$\sim B$	$(\sim B) \Rightarrow(\sim A)$
T	T				
T	F				
F	T				
F	F				

Theorem: A statement and its contrapositive are equivalent.
Find the inverse and the contrapositive of the following statements.

1. If Jane has grandchildren, then she has children.
2. If $x=1$, then x is a solution to $x^{2}-3 x+2=0$.

$$
\mathrm{A} \Rightarrow \mathrm{~B} \text { is equivalent to }(\operatorname{not} \mathrm{B}) \Rightarrow(\operatorname{not} \mathrm{A})
$$

Sometimes it is easier to prove the contrapositive than it is to prove the forward statement.

Example: Prove that $\emptyset \subseteq A$, for any set A.

- If $x \in \emptyset \Rightarrow x \in A$
- Contrapositive:

