Definitions.

Let S be a nonempty subset of \mathbb{R}, i.e. $\phi \neq S \subseteq \mathbb{R}$
(1) If $x_{0} \in S$ and $x \leq x_{0}$ for all $x \in S$,
then x_{0} is called the maximum of $S .\left(x_{0}=\max S.\right)$
(2) If $x_{0} \in S$ and $x_{0} \leq x$ for all $x \in S$, then x_{0} is called the minimum of $S .\left(x_{0}=\min S.\right)$
(3) If $\exists M \in \mathbb{R}$ such that $x \leq M$ for all $x \in S$, then M is called an upper bound of S and the set S is bounded above.
(4) If $\exists m \in \mathbb{R}$ such that $m \leq x$ for all $x \in S$, then m is called a lower bound of S and the set S is bounded below.
(5) If $\exists m, M \in \mathbb{R}$ such that $m \leq x \leq M \forall x \in S$, then S is bounded.
(6) If S is bounded above and S has a least upper bound M_{0}, then M_{0} is called the supremum of S and denoted by $\sup S$.
(7) If S is bounded below and S has a greatest lower bound m_{0}, then m_{0} is called the infimum of S and denoted by $\inf S$.

The Completeness Axiom. A fundamental property of the set \mathbb{R} of real numbers is that \mathbb{R} has "no gaps", i.e.,
$\forall S \subseteq \mathbb{R}$ and $S \neq \emptyset$, if S is bounded above, then $\sup S$ exists and $\sup S \in \mathbb{R}$.
(that is, the set S has a least upper bound which is a real number).
Note: The Completeness Axiom distinguishes the set of real numbers \mathbb{R} from the set of rational numbers \mathbb{Q}.

- EX: Let $A:=\{r \in \mathbb{Q}: 0 \leq r \leq \sqrt{2}\} \subseteq \mathbb{Q}$.
(1) Is the set A bounded above?
(2) Does it has a least upper bound in A ?

Examples.

Find the inf and sup of the following sets, if possible. State whether or not these numbers are in S .

1. $S=\{x \mid 0<x \leq 3\}$
2. $S=\left\{x \mid x^{2}-2 x-3<0\right\}$
3. $S=\{x \mid 0<x<5, \cos (x)=0\}$
4. $S=\left\{x \left\lvert\, x=\frac{1}{n}\right., n \in \mathbb{N}\right\}$

Some properties of sup and inf

Theorem. If x_{1} and x_{2} are least upper bounds for the set A, then $x_{1}=x_{2}$.

Theorem. If the sets A and B are bounded above and $A \subseteq B$, then $\sup (A) \leq \sup (B)$.

Chapter 12.1: Limits of Sequences

Definition: A sequence in a set S is a function from \mathbb{N} to S.

Definition (Limit of a sequence):
If, $\forall \varepsilon>0, \exists N=N(\varepsilon)$ such that $\forall n>N,\left|x_{n}-x\right| \leq \varepsilon$, then a sequence $\left(x_{n}\right)$ of real numbers converges to the real number x.
(We write $\lim _{n \rightarrow \infty} x_{n}=x$, " x " is the limit of the sequence $\left(x_{n}\right)$.)
Definition: If a sequence $\left(x_{n}\right)$ does not converge to some real number, then the sequence $\left(x_{n}\right)$ diverges.

Write the negation of convergence using quantifiers.

Examples

1. Prove that $\lim _{n \rightarrow \infty} \frac{1}{n}=0$.
2. Prove that $\lim _{n \rightarrow \infty} 1=1$.
3. Prove that $\lim _{n \rightarrow \infty} \frac{3}{2 n+1}=0$.
4. Prove that $\lim _{n \rightarrow \infty} \frac{2 n+1}{n+1}=2$.
5. Prove that the sequence $a_{n}=1+(-1)^{n}$ is divergent.

Examples

1. Prove that $\lim _{n \rightarrow \infty} \frac{n-2}{2 n+1}=\frac{1}{2}$.
2. Prove that $\lim _{n \rightarrow \infty} \frac{n+1}{n^{2}}=0$.
3. Prove that $\lim _{n \rightarrow \infty} \frac{2 n}{n^{2}+3}=0$.
4. Prove that $\lim _{n \rightarrow \infty} \frac{2 n}{n^{2}-3}=0$.
5. Prove that $\lim _{n \rightarrow \infty} \frac{n^{2}+2 n}{n^{3}-5}=0$.

Some Properties of Real Numbers

Prove the following.
Proposition. Let $x, y \in \mathbb{R}$. Then $x=y$ if and only if $\forall \varepsilon>0$ we have $|x-y| \leq \varepsilon$.

Some properties of limit.

Theorem 1. If a sequence $\left(a_{n}\right)$ converges, then its limit is unique.

Theorem 2. Every convergent sequence must be bounded.
Theorem 3. Algebraic rules for sequences:
Let $\lim _{n \rightarrow \infty} s_{n}=s$ and $\lim _{n \rightarrow \infty} t_{n}=t$.
(a) For $k \in \mathbb{R}, \lim _{n \rightarrow \infty} k s_{n}=k \lim _{n \rightarrow \infty} s_{n}=k s$.
(b) $\lim _{n \rightarrow \infty}\left(s_{n}+t_{n}\right)=s+t$.
(c) $\lim _{n \rightarrow \infty}\left(s_{n} \cdot t_{n}\right)=s \cdot t$.
(d) For all $n, s_{n} \neq 0$ and $s \neq 0, \lim _{n \rightarrow \infty} \frac{1}{s_{n}}=\frac{1}{s}$ and $\lim _{n \rightarrow \infty} \frac{t_{n}}{s_{n}}=\frac{t}{s}$.

Divergence
 Definition

(1) If $\forall M>0, \exists N$ such that $\forall n>N, n \in \mathbb{N}, s_{n}>M$, then the sequence diverges to $+\infty$. We write $\lim _{n \rightarrow \infty} s_{n}=+\infty$.
(2) If $\forall M<0, \exists N$ such that $\forall n>N, n \in \mathbb{N}, s_{n}<M$, then the sequence diverges to $-\infty$. We write $\lim _{n \rightarrow \infty} s_{n}=-\infty$.

Examples

1. Give a formal proof that $\lim _{n \rightarrow \infty}(\sqrt{n}+7)=+\infty$.
2. Prove that $\lim _{n \rightarrow \infty} \frac{n^{2}+4}{n+2}=+\infty$.
3. Prove that $\lim _{n \rightarrow \infty} \frac{n^{3}}{1-n}=-\infty$.
