Definition. Two integers are called **coprime** or **relatively prime** if their greatest common divisor is 1.

Theorem. Let $a,b,c\in\mathbb{Z}$ where a and b are relatively prime nonzero integers. If $a\mid c$ and $b\mid c$, then $ab\mid c$.

Corollary. If $p, q \in \mathbb{N}$ distinct primes, then $\sqrt{pq} \notin \mathbb{Q}$. *Proof:*

Example. Assume that a and b are coprime. Let $g = \gcd(a+b, a-b)$ and show that $g \mid 2a$ and $g \mid 2b$. Use cases on $\gcd(2,g)$ to prove that $\gcd(a+b, a-b) \leq 2$.