Definition. Two integers are called coprime or relatively prime if their greatest common divisor is 1 .

Theorem. Let $a, b, c \in \mathbb{Z}$ where $a$ and $b$ are relatively prime nonzero integers. If $a \mid c$ and $b \mid c$, then $a b \mid c$.

Corollary. If $p, q \in \mathbb{N}$ distinct primes, then $\sqrt{p q} \notin \mathbb{Q}$.
Proof:

Example. Assume that $a$ and $b$ are coprime. Let $g=\operatorname{gcd}(a+b, a-b)$ and show that $g \mid 2 a$ and $g \mid 2 b$. Use cases on $\operatorname{gcd}(2, g)$ to prove that $\operatorname{gcd}(a+b, a-b) \leq 2$.

