Theorem. (The Euclidean Algorithm) Let x and y be integers. Then there exist integers $q_1, q_2, ..., q_k$ and a descending sequence of positive integers, $r_1, ..., r_k, r_{k+1} = 0$, such that:

 $x = q_1 y + r_1$ $y = q_2 r_1 + r_2$ $r_1 = q_3 r_2 + r_3$ \vdots $r_{k-1} = q_k r_k + 0$

Furthermore, $gcd(x, y) = r_k$.

Use the Euclidean Algorithm to find gcd(51, 288). Find $x, y \in \mathbb{Z}$ such that 51x + 288y = gcd(51, 288).

Proof of the Euclidean Algorithm

Why can we assume WLOG that x and y in the Euclidean Algorithm are positive and x > y?

Lemma. Let a and b be positive integers. If b = aq + r for some integers q and r, then gcd(a, b) = gcd(r, a).

How can we combine the above Lemma with the Division Algorithm to prove the Euclidean Algorithm?

Euclid's Lemma. Suppose n, a, and $b \in \mathbb{N}$. If $n \mid ab$ and gcd(n, a) = 1, then $n \mid b$. *Proof:*

Alternative version of Euclid's Lemma. If p is prime and p divides ab, then p divides a or p divides b. *Proof:* **Definition.** Two integers are called **coprime** or **relatively prime** if their greatest common divisor is 1.

Corollary. If $n \in \mathbb{N}$ is not a square number, then $\sqrt{n} \notin \mathbb{Q}$. *Proof:*