Theorem. (The Euclidean Algorithm) Let x and y be integers. Then there exist integers $q_{1}, q_{2}, \ldots, q_{k}$ and a descending sequence of positive integers, $r_{1}, \ldots, r_{k}, r_{k+1}=0$, such that:

$$
\begin{gathered}
x=q_{1} y+r_{1} \\
y=q_{2} r_{1}+r_{2} \\
r_{1}=q_{3} r_{2}+r_{3} \\
\vdots \\
r_{k-1}=q_{k} r_{k}+0
\end{gathered}
$$

Furthermore, $\operatorname{gcd}(x, y)=r_{k}$.

Use the Euclidean Algorithm to find $\operatorname{gcd}(51,288)$. Find $x, y \in \mathbb{Z}$ such that $51 x+288 y=$ $\operatorname{gcd}(51,288)$.

Proof of the Euclidean Algorithm
Why can we assume WLOG that x and y in the Euclidean Algorithm are positive and $x>y$?

Lemma. Let a and b be positive integers. If $b=a q+r$ for some integers q and r, then $\operatorname{gcd}(a, b)=\operatorname{gcd}(r, a)$.

How can we combine the above Lemma with the Division Algorithm to prove the Euclidean Algorithm?

Euclid's Lemma. Suppose n, a, and $b \in \mathbb{N}$. If $n \mid a b$ and $\operatorname{gcd}(n, a)=1$, then $n \mid b$. Proof:

Alternative version of Euclid's Lemma. If p is prime and p divides $a b$, then p divides a or p divides b.

Proof:

Definition. Two integers are called coprime or relatively prime if their greatest common divisor is 1 .

Corollary. If $n \in \mathbb{N}$ is not a square number, then $\sqrt{n} \notin \mathbb{Q}$.
Proof:

