11.1: Divisibility Properties of Integers

Prime Numbers and Composites

Definition: If p is an integer greater than 1 , then p is a prime number if the only divisors of p are 1 and p.

Definition: A positive integer greater than 1 that is not a prime number is called composite.

In other words, a composite number is a positive integer that has at least one positive divisor other than one or itself.

So, if $n>0$ is an integer and $\exists a, b \in \mathbb{Z}, 1<a, b<n$ such that $n=a \times b$, then n is a composite number.

Sieve of Eratosthenes and Interesting Facts about Primes

- There are no efficient algorithms known that will determine whether a given integer is prime or find its prime factors.
- The above is used in many of the current cryptosystems.
- There is no known procedure that will generate prime numbers.
- Twin primes conjecture: There are infinitely many prime pairs, that is, consecutive odd prime numbers, such as 5 and 7 , or 41 and 43 . No one so far has been able to prove or disprove it.
- Goldbach's conjecture: Every even integer greater than 2 can be expressed as the sum of two primes. No one so far has been able to prove or disprove it.

Sieve of Eratosthenes:

11.2 The Division Algorithm

Definition: Let a, b be non-zero integers. We say
b is divisible by a (or a divides b)
if there is an integer x such that $a \cdot x=b$.
And if this is the case we write $a \mid b$, otherwise we write $a \nmid b$.

Theorem 1. For all integers a, b, and c,

1. If $a \mid b$ and $a \mid c$, then $a \mid(x b+y c) \quad \forall x, y \in \mathbb{Z}$.
2. If $a \mid b$, then $a \mid(b c)$.
3. If $a \mid b$ and $b \mid c$, then $a \mid c$.

Theorem 2. Let $a, b \in \mathbb{Z}-\{0\}$.

1. If $a \mid b$ and $b \mid a$, then $a=b$ or $a=-b$.
2. If $a \mid b$, then $|a| \leq|b|$.

Theorem (The Division Algorithm). Let a and b be integers with $a, b>0$. There exist unique integers q and r such that $b=a q+r$ and $0 \leq r<a$.

Definition: $b=a q+r$ and $0 \leq r<a$
b is called the dividend.
a is called the divisor.
q is called the quotient.
r is called the remainder.

Theorem (The Division Algorithm, General Form). Let a and b be integers with a, b with $a \neq 0$. There exist unique integers q and r such that $b=a q+r$ and $0 \leq r<|a|$.

Example. Find the quotient and remainder if

1. $b=27, a=4$
2. $b=-27, a=-4$
3. $b=27, a=-4$

Proof of the Division Algorithm.

The set of integers modulo n Let a relation R defined on \mathbb{Z} by $a R b$ if $a \equiv b(\bmod \mathrm{n})$. With the aid of the Division Algorithm, the equivalence class of an integer r in the set of \mathbb{Z}_{n} is

$$
[r]=\{n q+r: q \in \mathbb{Z}\}=\{\cdots,-2 n+r,-n+r, r, n+r, 2 n+r, \cdots\} .
$$

That is, $[r]$ consists of all those integers having a remainder of r when divided by n.
Remark:
A. $\mathbb{Z}_{n}=\{[0],[1], \cdots,[n-1]\}$.
B. Every equivalence class $[i]$ in \mathbb{Z}_{n} is nonempty.
C. The equivalence classes $[0],[1], \cdots,[n-1]$ are pairwise disjoint, that is, $[i] \cap[j]=\emptyset$ for $i \neq j$.
D. $\mathbb{Z}=[0] \cup[1] \cup \cdots \cup[n-1]$.
E. Therefore, Z_{n} is a partition of \mathbb{Z}.

11.3 Greatest Common Divisor

Definition: Given two integers b and c at least one of which is not 0 , we say a is the greatest common divisor of b and c if a is the greatest among all common divisors of b and c. The greatest common divisor of b and c is denoted by $\operatorname{gcd}(b, c)$ or simply (b, c).

Why do we require that "at least one of b and c be nonzero"?
Could we make sense of $\operatorname{gcd}(0,0)$?

Find

1. $\operatorname{gcd}(24,36)$
2. $\operatorname{gcd}(22,35)$

Theorem 3. For any integers a and b, the followng properties hold:

1. $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, a)$,
2. $\operatorname{gcd}(a, b) \geq 1$,
3. $\operatorname{gcd}(a, b)=\operatorname{gcd}(|a|,|b|)$,
4. $\operatorname{gcd}\left(\frac{a}{\operatorname{gcd}(a, b)}, \frac{b}{\operatorname{gcd}(a, b)}\right)=1$,
5. $\operatorname{gcd}(a, b)=\operatorname{gcd}(a+n b, b), \forall n \in \mathbb{Z}$.

- Use the following lemma to prove 5.

Lemma. If $a \mid b$ and $a \mid c$, then $a \mid(m b+n c)$ for all integers m and n.

Definition. An integer n is called a linear combination of $x, y \in \mathbb{Z}$ if $\exists k, m \in \mathbb{Z}$ such that $m x+k y=n$.

- Is 1 a linear combination of 5 and 8 ?
- Is 7 a linear combination of 2 and 6 ?

Theorem 4. Let a and b be integers that are not both 0 . Then $\operatorname{gcd}(a, b)$ is the least positive integer that is a linear combination of a and b.

Theorem 5. Let a and b be integers that are not both 0 . Then $d=\operatorname{gcd}(a, b)$ if and only if d that positive integer which satisfies the following two conditions:

- d is a common divisor of a and b;
- if c is any common divisor of a and b, then $c \mid d$.

