Sec 2.1: Statements

Mathematics is the business of proving mathematical <u>statements</u> to be **true** or **false**. Logic lays the foundation for rigorous mathematical proofs.

Definition: A **statement** is a sentence that is either true or not.

Give examples of some statements.

Give an example of a sentence which is **not a statement**.

"This statement is false."

The above is an example of a self-referential sentence. Determine if the following are statements. Explain.

1. "Assume that the set A is nonempty."

2. "The set A is nonempty."

- 3. "The set A, defined by $A = \{x \in \mathbb{R} \mid x^2 + 5 = 0\}$ is nonempty."
- 4. $P(x): x^2 8 \ge 0$.

Be pedantic!

Which of these statements are true?

- (1) There are 18 students registered for this class.
- (2) There are 5 students registered for this class.
- (3) There are 50 students registered for this class.
- (4) There is a student registered for this class.
- (5) There are no students registered for this class.

Sec 2.2 : The Negation of a Statement

Definition: The **negation** of statement A is another statement that is interpreted as being false when A is true and true when A is false.

The negation of the statement A is written as $\sim A$ or not (A).

• A: "I like ice cream." $\sim A$:

 $\sim (\sim A)$:

• B: "All sheep are black." $\sim B$:

$$\sim (\sim B)$$
:

Theorem: $\sim (\sim A)$ is equivalent to A.

Truth Tables (Sec 2.8 : Logical Equivalence)

Definition: Two statements P and Q are called <u>logically equivalent</u> if the two statements have the same truth values for *all combinations* of truth values of their component statements.

Notation: If two statement P and Q are logically equivalent, then this is denoted by $P\equiv Q$

Remark: If we can show that P is true, then Q is true as well.

1. Statements with AND $(A \land B)$

"Yesterday I went biking and I saw a fox."

If this statement is not true, what must be true? (What is the negation of the above?)

Α	В	A and B	not(A and B)
Т	Т		
T	F		
F	Т		
F	F		

2. Statements with OR $(A \lor B)$

"I have a candy in my left pocket or in my right pocket."

 $x \in A \cup B$ is equivalent to $x \in A$ or $x \in B$.

Definition: $A \lor B$ is true when at least one of A or B is true.

The mathematical OR is not exclusive. Unlike the conversational OR, it is not "either - or"!

List some statements with OR

А	В	$A \lor B$	$\sim (A \lor B)$
Т	Т		
Т	F		
F	Т		
F	F		

3. Negation of and statement

- A: "Jesse is tall" B: "Daniel is tall"
- A \land B :
- \sim (A \land B) :

Theorem: The **negation** of A and B is equivalent to (not A) or (not B).

4. Negations of **or** statements

- A: "Rachel's major is mathematics" B: "Asia's major is mathematics"
- A ∨ B :
- \sim (A \lor B) :

Theorem: The **negation** of A or B is equivalent to (not A) and (not B).

5. Negation of AND and OR

А	В	$\sim A$	$\sim B$	$A \lor B$	$\sim (A \lor B)$	$(\sim A) \land (\sim B)$
Т	Т	F	F			
Т	F	F	Т			
F	Т	Т	F			
F	F	Т	Т			

Theorem:	not(A or B)	is equivalent to	not(A) and $not(B)$.			
$\sim (A \lor B) \equiv (\sim A) \land (\sim B)$						

Prove on your own:

Theorem: not(A and B) is equivalent to not(A) or not(B).

$$\sim (A \wedge B) \equiv (\sim A) \lor (\sim B)$$