Sec 2.1: Statements

Mathematics is the business of proving mathematical statements to be true or false. Logic lays the foundation for rigorous mathematical proofs.

Definition: A statement is a sentence that is either true or not.
Give examples of some statements.

Give an example of a sentence which is not a statement.
"This statement is false."

The above is an example of a self-referential sentence.
Determine if the following are statements. Explain.

1. "Assume that the set A is nonempty."
2. "The set A is nonempty."
3. "The set A, defined by $A=\left\{x \in \mathbb{R} \quad \mid \quad x^{2}+5=0\right\}$ is nonempty."
4. $P(x): x^{2}-8 \geq 0$.

Be pedantic!

Which of these statements are true?
(1) There are 18 students registered for this class.
(2) There are 5 students registered for this class.
(3) There are 50 students registered for this class.
(4) There is a student registered for this class.
(5) There are no students registered for this class.

Sec 2.2: The Negation of a Statement

Definition: The negation of statement A is another statement that is interpreted as being false when A is true and true when A is false.

The negation of the statement A is written as $\sim A$ or not (A).

- A: "I like ice cream."
$\sim A$:
$\sim(\sim A):$
- B: "All sheep are black."
$\sim B$:
$\sim(\sim B):$

Theorem: $\sim(\sim A)$ is equivalent to A .

Truth Tables (Sec 2.8 : Logical Equivalence)

A	$\sim A$	$\sim(\sim A)$
T		
F		

Definition: Two statements P and Q are called logically equivalent if the two statements have the same truth values for all combinations of truth values of their component statements.
Notation: If two statement P and Q are logically equivalent, then this is denoted by $P \equiv Q$
Remark: If we can show that P is true, then Q is true as well.

1. Statements with AND $(A \wedge B)$

"Yesterday I went biking and I saw a fox."

If this statement is not true, what must be true?
(What is the negation of the above?)

Definition: $A \wedge B$ is true only if both A and B are true.

A	B	A and B	$\operatorname{not}(\mathrm{A}$ and B$)$
T	T		
T	F		
F	T		
F	F		

2. Statements with $\mathrm{OR}(A \vee B)$

"I have a candy in my left pocket or in my right pocket."
$x \in A \cup B$ is equivalent to $x \in A$ or $x \in B$.
Definition: $A \vee B$ is true when at least one of A or B is true.
The mathematical OR is not exclusive. Unlike the conversational OR, it is not "either - or"!

List some statements with OR

A	B	$A \vee B$	$\sim(A \vee B)$
T	T		
T	F		
F	T		
F	F		

3. Negation of and statement

- A: "Jesse is tall" B: "Daniel is tall"
- A \wedge B:
- $\sim(\mathrm{A} \wedge \mathrm{B}):$

Theorem: The negation of A and B is equivalent to (not A) or (not B).

4. Negations of or statements

- A: "Rachel's major is mathematics" B: "Asia's major is mathematics"
- $\mathrm{A} \vee \mathrm{B}$:
- $\sim(A \vee B):$

Theorem: The negation of A or B is equivalent to (not A) and (not B).

5. Negation of AND and OR

A	B	$\sim A$	$\sim B$	$A \vee B$	$\sim(A \vee B)$	$(\sim A) \wedge(\sim B)$
T	T	F	F			
T	F	F	T			
F	T	T	F			
F	F	T	T			

Theorem: $\operatorname{not}(\mathrm{A}$ or B$)$ is equivalent to $\operatorname{not}(\mathrm{A})$ and $\operatorname{not}(\mathrm{B})$.

$$
\sim(A \vee B) \equiv(\sim A) \wedge(\sim B)
$$

Prove on your own:
\square
Theorem: $\operatorname{not}(\mathrm{A}$ and B$)$ is equivalent to $\operatorname{not}(\mathrm{A})$ or $\operatorname{not}(\mathrm{B})$.

$$
\sim(A \wedge B) \equiv(\sim A) \vee(\sim B)
$$

