Numerically equivalent sets

- If two sets A and B are both empty, A and B have the same cardinality.
- Two finite sets have the same number of elements, they have the same cardinality. Such sets are referred to as numerically equivalent sets.
- What do we mean if we say that two infinite sets are numerically equivalent sets (have the same cardinality)?
What if we can find a bijective function f between two infinite sets?

Definition: Two sets A and B are said to have the same cardinality, that is, $|A|=|B|$ if there exists a bijective function f from A to B.

Definition: A set A is called denumerable if A has the same cardinality as the set of natural number.

1. An infinite set X is countably infinite (or countable)
if there exists a bijection between X and \mathbb{N}.

- $\operatorname{Ex}: \mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{N} \times \mathbb{N}$ so on.

2. An infinite set X is uncountably infinite
if X has more than countably many elements.

- $\operatorname{Ex}: \mathbb{R}$, the set of real numbers from 0 to 1 (i.e, $[0,1]$). $\mathbb{R}-\mathbb{Q}$ (the set of irrational numbers) so on.

Examples of countable sets

1. Prove that the set $A=\left\{\frac{1}{n}: n \in \mathbb{N}\right\}$ is countable.
2. Prove that the set of odd (positive) numbers is countable.
3. Prove that the set of \mathbb{Z} is countably infinite.

Theorem: Every infinite subset of a denumerable set is denumerable.
4. Prove that the rationals, \mathbb{Q}, are countable

First, let us write all possibilities for a / b in a grid as follows:

Examples of uncountable sets

- The set of real numbers, \mathbb{R}, is uncountable.
- Every nonempty interval (x, y) is uncountable.

The set of real numbers in the interval $[0,1]$ is uncountable

1. Assumption : there exists a bijection between \mathbb{N} and $[0,1]$.
2. By assumption, we can list all real numbers in $[0,1]$.
3. Show that there is a new real number in $[0,1]$ which is not on the list.

Cantor's argument : $|\mathbb{R}|>|\mathbb{N}|$ (An uncountable set)

Cantor's argument was a mathematical proof that there exist infinite sets which don't have a one-to-one correspondence with the infinite set of natural numbers. Now such sets are called uncountable sets.

To prove $|\mathbb{R}|>|\mathbb{N}|$, we assume that the set of \mathbb{R} is countable. Let us consider a subset $[0,1]$ of \mathbb{R}. By the assumption, we can list all real numbers in $[0,1]$.

$1:$	0	\cdot	a_{11}	a_{12}	a_{13}	a_{14}	a_{15}	\ldots
$2:$	0	\cdot	a_{21}	a_{22}	a_{23}	a_{24}	a_{25}	\ldots
$3:$	0	.	a_{31}	a_{32}	a_{33}	a_{34}	a_{35}	\ldots
$4:$	0	\cdot	a_{41}	a_{42}	a_{43}	a_{44}	a_{45}	\cdots
$5:$	0	\cdot	a_{51}	a_{52}	a_{53}	a_{54}	a_{55}	\ldots
\vdots				\vdots			\ddots	

where $a_{i j} \in\{0,1,2, \cdots, 7,8,9\}$. Construct a new real number x which is in $[0,1]$, but not in the above list.

Corollary: \mathbb{R} is uncountable.
How can we prove this?

Interesting facts

- $|\mathbb{R}|$ is referred to as cardinality of the continuum
- $|\mathcal{P}(\mathbb{N})|=|\mathbb{R}|$
- Cantor's Theorem: $|\mathcal{P}(A)|>|A|$ for any set A.
- Continuum Hypothesis: $\nexists A$ such that $|\mathbb{N}|<|A|<|\mathbb{R}|$.

The Cotinuum Hypothesis is independent of the axioms of Set Theory. That is, both the hypothesis and its negation are consistent with these axioms.

