Numerically equivalent sets

- If two sets A and B are both empty, A and B have the same cardinality.
- Two **finite** sets have the same number of elements, they have the same cardinality. Such sets are referred to as **numerically equivalent sets**.
- What do we mean if we say that two **infinite** sets are numerically equivalent sets (have the same cardinality)? What if we can find a bijective function f between two infinite sets?

Definition: Two sets A and B are said to have the **same cardinality**, that is, |A| = |B| if there exists a **bijective** function f from A to B.

Definition: A set A is called **denumerable** if A has the same cardinality as the set of natural number.

- 1. An *infinite* set X is **countably infinite** (or **countable**) if there exists a bijection between X and \mathbb{N} .
 - Ex : $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{N} \times \mathbb{N}$ so on.
- 2. An *infinite* set X is **uncountably infinite** if X has more than countably many elements.
 - Ex : ℝ, the set of real numbers from 0 to 1 (i.e, [0, 1]).
 ℝ ℚ (the set of irrational numbers) so on.

Examples of countable sets

1. Prove that the set $A = \{\frac{1}{n} : n \in \mathbb{N}\}$ is countable.

2. Prove that the set of odd (positive) numbers is countable.

3. Prove that the set of \mathbbm{Z} is countably infinite.

Theorem: Every infinite subset of a denumerable set is denumerable.

4. Prove that the rationals, \mathbb{Q} , are countable

First, let us write all possibilities for a/b in a grid as follows:

Examples of uncountable sets

- The set of real numbers, \mathbb{R} , is uncountable.
- Every nonempty interval (x, y) is uncountable.

The set of real numbers in the interval [0,1] is uncountable

- 1. Assumption : there exists a bijection between \mathbb{N} and [0, 1].
- 2. By assumption, we can list all real numbers in [0, 1].
- 3. Show that there is a new real number in [0, 1] which is not on the list.

Cantor's argument : $|\mathbb{R}| > |\mathbb{N}|$ (An uncountable set)

Cantor's argument was a mathematical proof that there exist infinite sets which don't have a one-to-one correspondence with the infinite set of natural numbers. Now such sets are called uncountable sets.

To prove $|\mathbb{R}| > |\mathbb{N}|$, we assume that the set of \mathbb{R} is countable. Let us consider a subset [0,1] of \mathbb{R} . By the assumption, we can list all real numbers in [0,1].

1:	0	a_{11}	a_{12}	a_{13}	a_{14}	a_{15}	•••
2:	0	a_{21}	a_{22}	a_{23}	a_{24}	a_{25}	•••
3:	0	a_{31}	a_{32}	a_{33}	a_{34}	a_{35}	• • •
4:	0	a_{41}	a_{42}	a_{43}	a_{44}	a_{45}	• • •
5:	0	a_{51}	a_{52}	a_{53}	a_{54}	a_{55}	• • •
÷				÷			·

where $a_{ij} \in \{0, 1, 2, \dots, 7, 8, 9\}$. Construct a new real number x which is in [0, 1], but not in the above list.

Corollary: \mathbb{R} is uncountable. How can we prove this?

Interesting facts

- $|\mathbb{R}|$ is referred to as cardinality of the continuum
- $|\mathcal{P}(\mathbb{N})| = |\mathbb{R}|$
- Cantor's Theorem: $|\mathcal{P}(A)| > |A|$ for any set A.
- Continuum Hypothesis: $\nexists A$ such that $|\mathbb{N}| < |A| < |\mathbb{R}|$.

The Cotinuum Hypothesis is independent of the axioms of Set Theory. That is, both the hypothesis and its negation are consistent with these axioms.