Invertible functions

A function $f: A \rightarrow B$ is invertible if $f^{-1}: B \rightarrow A$ is a function.
\star What is the definition of a function?

- First, every element in a domain has an image in a codomain.
- Second, the image of each element in a domain is unique!!

Theorem: Let $f: A \rightarrow B$ be a function.
f is bijective if and only if f is invertible and the inverse function is also bijective.

Remark: Let f be bijective. Then both composition functions are well defined by $\left(f^{-1} \circ f\right)(x)=x$ for all $x \in X$ and $\left(f \circ f^{-1}\right)(y)=y$ for all $y \in Y$.

Example Let the set $S=\{$ all 50 states. $\}=\{\mathrm{AL}, \mathrm{AK}, \cdots, \mathrm{WY}\}$, and the set $C=$ \{ all US cities. \}. Define the functions $f: S \rightarrow C$ and $g: C \rightarrow S$ with

$$
\begin{aligned}
f(\text { state }) & =\text { its capital city } \\
g(\text { city }) & =\text { the state it is in. }
\end{aligned}
$$

For example, $f(\mathrm{MI})=$ Lansing, and $g($ Detroit $)=$ MI.

1. Determine whether f and g are injective, surjectie, and/or bijective. Explain very briefly.
2. Prove that, for all $s \in S$, we have $g(f(s))=s$.
3. It is false that $f(g(c))=c$ for all $c \in C$. Find a counter-example, that is, an example of c where the equation is false.
4. Explain how to take a smaller set of cities $\bar{C} \subset C$ to get new, bijective functions : $\bar{f}: S \rightarrow \bar{C}$ and $\bar{g}: \bar{C} \rightarrow S$ having different domain or codomain, but defined by the same rules. Prove that \bar{f} and \bar{g} are inverse functions.

Exercises

1. Let $A=\mathbb{R}-\{1\}$ and define $f: A \rightarrow A$ by $f(x)=\frac{x}{x-1}$ for all $x \in A$.
(a) Prove that f is bijective.
(b) Determine f^{-1}.
(c) Determine $f \circ f \circ f$.
2. Let $A=\{x \mid x \in \mathbb{R}$ and $x>0\}$. The function $f: A \rightarrow \mathbb{R}$ is defined by $f(x)=$ $x^{2}-4 x+5$. What is the largest codomain so that f is surjective?
3. Let $A=\{x \mid x \in \mathbb{R}$ and $x \geq 2\}$ and $B=\{x \mid x \in \mathbb{R}$ and $x \geq 1\}$ and the function $f: A \rightarrow B$ is defined by $f(x)=x^{2}-4 x+5$. If there exists an inverse function f^{-1}, then find the inverse function of the function f and specify the domain and codomain of the inverse function.
