Invertible functions

A function $f : A \to B$ is **invertible** if $f^{-1} : B \to A$ is a function.

- \star What is the definition of a function?
- First, every element in a domain has an image in a codomain.
- Second, the image of each element in a domain is unique!!

Theorem: Let $f : A \to B$ be a function.

f is bijective if and only if f is invertible and the inverse function is also bijective.

Remark: Let f be bijective. Then both composition functions are well defined by $(f^{-1} \circ f)(x) = x$ for all $x \in X$ and $(f \circ f^{-1})(y) = y$ for all $y \in Y$.

Example Let the set $S = \{ all 50 \text{ states.} \} = \{AL, AK, \dots, WY \}$, and the set $C = \{ all US \text{ cities.} \}$. Define the functions $f : S \to C$ and $g : C \to S$ with

f(state) = its capital cityg(city) = the state it is in.

For example, f(MI) = Lansing, and g(Detroit) = MI.

- 1. Determine whether f and g are injective, surjectie, and/or bijective. Explain very briefly.
- 2. Prove that, for all $s \in S$, we have g(f(s)) = s.
- 3. It is false that f(g(c)) = c for all $c \in C$. Find a counter–example, that is, an example of c where the equation is false.
- 4. Explain how to take a smaller set of cities $\overline{C} \subset C$ to get new, bijective functions : $\overline{f}: S \to \overline{C}$ and $\overline{g}: \overline{C} \to S$ having different domain or codomain, but defined by the same rules. Prove that \overline{f} and \overline{g} are inverse functions.

Exercises

- 1. Let $A = \mathbb{R} \{1\}$ and define $f : A \to A$ by $f(x) = \frac{x}{x-1}$ for all $x \in A$.
 - (a) Prove that f is bijective.
 - (b) Determine f^{-1} .
 - (c) Determine $f \circ f \circ f$.

2. Let $A = \{x | x \in \mathbb{R} \text{ and } x > 0\}$. The function $f : A \to \mathbb{R}$ is defined by $f(x) = x^2 - 4x + 5$. What is the largest codomain so that f is surjective?

3. Let $A = \{x | x \in \mathbb{R} \text{ and } x \geq 2\}$ and $B = \{x | x \in \mathbb{R} \text{ and } x \geq 1\}$ and the function $f : A \to B$ is defined by $f(x) = x^2 - 4x + 5$. If there exists an inverse function f^{-1} , then find the inverse function of the function f and specify the domain and codomain of the inverse function.