Bijective functions

Definition: A function \(f : X \to Y \) is **bijective** (or **one–to–one correspondence**) if \(f \) is both injective and surjective.

Theorem. If \(A \) and \(B \) are finite sets with \(|A| = |B| = n \), then there are \(n! \) bijective functions from \(A \) to \(B \).

Theorem. Let \(A \) and \(B \) be finite nonempty sets with \(|A| = |B| \) and let \(f \) be a function from \(A \) to \(B \). Then \(f \) is one-to-one if and only if \(f \) is onto.

• Does this hold if \(A \) and \(B \) are infinite sets?
Examples:

1. Prove that the function $f : \mathbb{R} - \{5\} \to \mathbb{R} - \{1\}$ defined by $f(x) = \frac{x}{x - 5}$ is bijective.

2. Prove that the function $f : \mathbb{Z}_6 \to \mathbb{Z}_6$ defined by $f([x]) = [5x + 2]$ is a well defined bijective function.

Composition of Functions

Definition: If $f : A \to B$ and $g : B \to C$ are functions, then $g \circ f$ is a function from A to C defined by $(g \circ f)(x) = g(f(x))$. It is called the composition of f and g.

Examples:

1. $f : \mathbb{R} \to \mathbb{R}$ defined by $f(x) = x^2 + 2x + 5$ and $g : \mathbb{R}^+ \to \mathbb{R}$ defined by $f(x) = \sqrt{x}$. Find the domain and range of f and g, as well as $f \circ g$ and $g \circ f$ (where they are defined).
2. \(f = \{(1, m), (2, n), (3, m)\} \), \(g = \{(k, 1), (l, 2), (m, 1), (n, 3)\} \). Find \(f \circ g \) and \(g \circ f \).

Theorem. Let \(f : A \to B \) and \(g : B \to C \) be two functions.

(a) If \(f \) and \(g \) are injective, then so is \(g \circ f \).

(b) If \(f \) and \(g \) are surjective, then so is \(g \circ f \).

Corollary. Let \(f : A \to B \) and \(g : B \to C \) be bijective functions, then so is \(g \circ f \) is bijective.