Maps and functions: Definitions

Definition: A function or map from D to R is a triplet of objects $\langle f, D, R\rangle$, where D and R are sets and f is a subset of $D \times R$ with the following two properties:
(a) For all $x \in D$, there exists an element y in R such that $(x, y) \in f$.
(b) If $\left(x, y_{1}\right) \in f$ and $\left(x, y_{2}\right) \in f$, then $y_{1}=y_{2}$.

1. If every element of D is related to exactly one element of R, then f is a function from D to R. (This is the most studied type of relation.)
2. The set D is called the domain of f.
3. The set R is called the codomain of f.
4. The set $\{y \mid(x, y) \in f\}$ is called the range of f.
5. If $(x, y) \in f, y$ is the image of x with respect to f. It is called the value of x under f and is denoted by $f(x)$, that is, $y=f(x)$.
6. If $(a, b) \in f$, then b is refered as the image of a and is denoted by $b=f(a)$.
7. If A is a subset of D, the image $f(A)$ of A is defined as

$$
f(A)=\{f(x) \in R \mid x \in A\} .
$$

Thus, $f(C)$ is a subset of R.
8. For a subset B of R, the inverse image $f^{-1}(B)$ of B is defined as

$$
f^{-1}(B)=\{x \in D \mid f(x) \in B\}
$$

Thus, $f^{-1}(B)$ is a subset of D.

The Set of All Functions from A to B. For nonempty sets A and B, the set of all functions from A to B is denoted by B^{A}, i.e., $B^{A}=\{f \mid f: A \rightarrow B\}$.

EX. List all possible functions f from $\{a, b\}$ to $\{1,2,3\}$.

For finite sets A and B, the number of functions from a set A to a set B is

$$
\left|B^{A}\right|=|B|^{|A|} .
$$

Injective functions. A function $f: X \rightarrow Y$ is injective (or one-to-one) if

$$
\text { for all } x_{1}, x_{2} \in X, f\left(x_{1}\right)=f\left(x_{2}\right) \text { implies } x_{1}=x_{2} .
$$

- The definition states that any element of a set Y has no more than one pre-image.
- To prove the injectivity of a function, suppose that $f\left(x_{1}\right)=f\left(x_{2}\right)$ and show by direct implications that $x_{1}=x_{2}$.
- Since every two elements of A must have distinct images in B, if X and Y are finite sets, $|X| \leq|Y|$.
- We can intuitively test whether a function is injective by using the horizontal line test. Why?
- However, in this class we should rigorously prove it by using the definition and the horizontal line test is not accepted as a formal proof.

Examples

A. Consider the function $f:\{a, b, c\} \rightarrow\{2,4,6,8\}$ defined by $f(a)=4, f(b)=2$, and $f(c)=8$. Is this function injective?
B. Let $A=\{x \mid x \in \mathbb{R}$ and $x \neq 2\}$ and the function $f: A \rightarrow \mathbb{R}$ be defined by $f(x)=\frac{4 x}{x-2}$. Prove that the function f is injective.
Solution:
C. Let the function $f:[-1,1] \rightarrow[0,1]$ be defined by $f(x)=|x|$.

Is this function injective?
How about if its domain is $[0,1]$, instead of $[-1,1]$?

Exercises

1. Show that the function $f: \mathbb{R} \rightarrow \mathbb{R}$ given by $f(x)=x^{3}+1$ is injective.
2. Show that the function $f: \mathbb{N} \rightarrow \mathbb{R}$ given by $f(x)=x^{2}$ is injective.
3. Show that the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined by $f(x, y)=(x+y, x-y)$ is injective.
4. Prove or disprove that the function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=x^{3}-x$ is injective.
5. Prove that the function $f: \mathbb{R} \rightarrow \mathbb{R}$ given by $f(x)=x^{2}$ is not injective.

Surjective functions. A function $f: X \rightarrow Y$ is surjective if

$$
\text { for all } y \in Y \text {, there exists } x \in X \text { such that } f(x)=y \text {. }
$$

- The definition states that every element of Y is the image of at least one element of a set X. Thus, if X and Y are finite sets, $|Y| \leq|X|$.
- Note that, by the definition of a surjective function, $Y \subseteq \operatorname{Range}(f)$. Since Range (f) $\subseteq Y$, Range $(f)=Y$.
- Proving surjectivity:

If any value y in Y is given, we have to prove the existence of x in X such that $f(x)=y$.

The procedure for proving that a function is surjective is :

1. Let y be in the codomain such that $y=f(x)$.
2. Solve the equation $y=f(x)$ for x.
3. Check that x found in the second step is an element in the domain of f.

Examples

- Prove that the function $f: \mathbb{R} \rightarrow \mathbb{R}$ given by $f(x)=3 x+1$ is surjective.

Exercises

1. If the function $f: \mathbb{R} \rightarrow \mathbb{R}$ is defined by
$f(x)=\left\{\begin{array}{cc}x^{2} & \text { if } x>0 \\ x & \text { if } x \leq 0,\end{array}\right.$
prove that the function f is surjective.
2. If the function $f: \mathbb{Z} \rightarrow \mathbb{N} \cup\{0\}$ defined by $f(x)=|x|$, prove that f is a surjective function.
3. If the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is defined by $f(x, y)=(x+y, x-y)$, prove or disprove that the function f is surjective.
4. Let $A=\{x \mid x \in \mathbb{R}$ and $0 \leq x \leq 5\}$ and $B=\{x \mid x \in \mathbb{R}$ and $2 \leq x \leq 8\}$. The function $f: A \rightarrow B$ is defined by $f(x)=x+2$. Prove that the function f is not a surjective function.
