Properties of Equivalence Classes

Theorem. Let R be an equivalence relation on a nonempty set A. For $a, b \in A$,

$$[a] = [b] \text{ if and only if } aRb.$$

Theorem. Let R be an equivalence relation on a set $S \neq \emptyset$. For any $x, y \in S$, $[x] = [y]$ if and only if $[x] \cap [y] \neq \emptyset$.

Theorem. Let R be an equivalence relation on a nonempty set A. Then the set

$$P = \{ [a] : a \in A \}$$

is a partition of A.
Congruence Modulo \(m \)

Definition: Let \(m \in \mathbb{N} \). The equivalence classes defined by the congruence relation modulo \(m \) are called **residue classes modulo** \(m \). For any \(a \in \mathbb{Z} \), \([a] \) denotes the equivalence class of \(a \), i.e.

\[
[a] = \{ b \in \mathbb{Z} | a \equiv b \pmod{m} \}
\]

Theorem (*Congruences as equivalence relation.*) Let \(m \in \mathbb{N} \).

The congruence relation modulo \(m \) is an equivalence relation on \(\mathbb{N} \).

To prove the theorem, check if the following properties for any \(a, b \in \mathbb{Z} \) are satisfied.

1. **Reflexivity:** \(a \equiv a \pmod{m} \)
2. **Symmetry:** If \(a \equiv b \pmod{m} \), then \(b \equiv a \pmod{m} \)
3. **Transitivity:** If \(a \equiv b \pmod{m} \) and \(b \equiv c \pmod{m} \), then \(a \equiv c \pmod{m} \).

Prove that \(a \equiv b \pmod{5} \) if and only if \(9a + b \equiv 0 \pmod{5} \) for \(a, b \in \mathbb{Z} \).
\mathbb{Z}_p: The Integers Modulo p

\mathbb{Z}_p is the set of integers modulo p. In reality the elements of \mathbb{Z}_p are equivalence classes (residue classes),

$$\mathbb{Z}_p = \{[0], [1], \ldots, [p-1]\}.$$

However, we often write

$$\mathbb{Z}_p = \{0, 1, \ldots, p-1\}.$$

Consider \mathbb{Z}_8. Is it possible to have $a, b \in \mathbb{Z}_8$ with $a \neq 0$ and $b \neq 0$, but $a \cdot b = 0$?

Operations on \mathbb{Z}_p

1. Let X be a nonempty set with an operation \circ.

 For any $x, y \in X$, if $x \circ y \in X$, then the set X is **closed** under the operation \circ.

 Example: \mathbb{N} is closed under the addition “$+$”.
2. Define $[a] + [b] = [a + b]$ and $[a] \cdot [b] = [ab]$. Are they well-defined?

 ★ Draw the addition and multiplication tables for \mathbb{Z}_4.

★ For $[a] = [b]$ and $[c] = [d]$ in \mathbb{Z}_p, if $[a + c] = [b + d]$ and $[ac] = [bd]$, then addition and multiplication in \mathbb{Z}_p are well defined.

3. Prove that the addition and multiplication are well defined in \mathbb{Z}_p.

4. If we define the “*-product” $[a] * [b] = [q]$ where q is the quotient when ab is divided by 3 for equivalence classes $[a]$ and $[b]$ in \mathbb{Z}_3, disprove that this *-product is well defined.