Math 299

Lecture 21: Sections 8.4-8.6
Equivalence Relations. Modular Arithmetic.

Properties of Equivalence Classes
Theorem. Let R be an equivalence relation on a nonempty set A. For $a, b \in A$,

$$
[a]=[b] \text { if and only if } a R b .
$$

Theorem. Let R be an equivalence relation on a set $S \neq \emptyset$. For any $x, y \in S,[x]=[y]$ if and only if $[x] \cap[y] \neq \emptyset$.

Theorem. Let R be an equivalence relation on a nonempty set A. Then the set

$$
P=\{[a]: a \in A\}
$$

is a partition of A.

Congruence Modulo m

Definition: Let $m \in \mathbb{N}$. The equivalence classes defined by the congruence relation modulo m are called residue classes modulo m. For any $a \in \mathbb{Z},[a]$ denotes the equivalence class of a, i.e.

$$
[a]=\{b \in \mathbb{Z} \mid a \equiv b(\bmod m)\}
$$

Theorem (Congruences as equivalence relation.) Let $m \in \mathbb{N}$.
The congruence relation modulo m is an equivalence relation on \mathbb{N}.
To prove the theorem, check if the following properties for any $a, b \in \mathbb{Z}$ are satisfied.

1. Reflexivity: $a \equiv a(\bmod m)$
2. Symmetry: If $a \equiv b(\bmod m)$, then $b \equiv a(\bmod m)$
3. Transitivity: If $a \equiv b(\bmod m)$ and $b \equiv c(\bmod m)$, then $a \equiv c(\bmod m)$.

Prove that $a \equiv b(\bmod 5)$ if and only if $9 a+b \equiv 0(\bmod 5)$ for $a, b \in \mathbb{Z}$.

\mathbb{Z}_{p} : The Integers Modulo p

\mathbb{Z}_{p} is the set of integers modulo p. In reality the elements of \mathbb{Z}_{p} are equivalence classes (residue classes),

$$
\mathbb{Z}_{p}=\{[0],[1], \ldots,[p-1]\} .
$$

However, we often write

$$
\mathbb{Z}_{p}=\{0,1, \ldots, p-1\} .
$$

Consider \mathbb{Z}_{8}. Is it possible to have $a, b \in \mathbb{Z}_{8}$ with $a \neq 0$ and $b \neq 0$, but $a \cdot b=0$?

Operations on \mathbb{Z}_{p}

1. Let X be a nonempty set with an operation 0 .

For any $x, y \in X$, if $x \circ y \in X$, then the set X is closed under the operation \circ.
Example : \mathbb{N} is closed under the addition " + ".
2. Define $[a]+[b]=[a+b]$ and $[a] \cdot[b]=[a b]$. Are they well-defined?
\star Draw the addition and multiplication tables for \mathbb{Z}_{4}.
\star For $[a]=[b]$ and $[c]=[d]$ in \mathbb{Z}_{p}, if $[a+c]=[b+d]$ and $[a c]=[b d]$, then addition and multiplication in \mathbb{Z}_{p} are well defined.
3. Prove that the addition and multiplication are well defined in \mathbb{Z}_{p}.
4. If we define the "*-product" $[a] *[b]=[q]$ where q is the quotient when $a b$ is divided by 3 for equivalence classes $[a]$ and $[b]$ in \mathbb{Z}_{3}, disprove that this ${ }^{*}$-product is well defined.

