Properties of Equivalence Classes

Theorem. Let R be an equivalence relation on a nonempty set A. For $a, b \in A$,

[a] = [b] if and only if aRb.

Theorem. Let R be an equivalence relation on a set $S \neq \emptyset$. For any $x, y \in S$, [x] = [y] if and only if $[x] \cap [y] \neq \emptyset$.

Theorem. Let R be an equivalence relation on a nonempty set A. Then the set

$$P = \{[a] : a \in A\}$$

is a partition of A.

Congruence Modulo m

Definition: Let $m \in \mathbb{N}$. The equivalence classes defined by the congruence relation *modulo* m are called **residue classes modulo** m. For any $a \in \mathbb{Z}$, [a] denotes the equivalence class of a, i.e.

$$[a] = \{b \in \mathbb{Z} \mid a \equiv b \, (mod \, m)\}$$

Theorem (Congruences as equivalence relation.) Let $m \in \mathbb{N}$.

The congruence relation modulo m is an equivalence relation on \mathbb{N} .

To prove the theorem, check if the following properties for any $a, b \in \mathbb{Z}$ are satisfied.

- 1. Reflexivity: $a \equiv a \pmod{m}$
- 2. Symmetry: If $a \equiv b \pmod{m}$, then $b \equiv a \pmod{m}$
- 3. Transitivity: If $a \equiv b \pmod{m}$ and $b \equiv c \pmod{m}$, then $a \equiv c \pmod{m}$.

Prove that $a \equiv b \pmod{5}$ if and only if $9a + b \equiv 0 \pmod{5}$ for $a, b \in \mathbb{Z}$.

\mathbb{Z}_p : The Integers Modulo p

 \mathbb{Z}_p is the set of integers modulo p. In reality the elements of \mathbb{Z}_p are equivalence classes (residue classes),

$$\mathbb{Z}_p = \{[0], [1], ..., [p-1]\}.$$

However, we often write

$$\mathbb{Z}_p = \{0, 1, ..., p-1\}.$$

Consider \mathbb{Z}_8 . Is it possible to have $a, b \in \mathbb{Z}_8$ with $a \neq 0$ and $b \neq 0$, but $a \cdot b = 0$?

Operations on \mathbb{Z}_p

1. Let X be a nonempty set with an operation \circ . For any $x, y \in X$, if $x \circ y \in X$, then the set X is **closed** under the operation \circ .

Example : \mathbb{N} is closed under the addition "+".

- 2. Define [a] + [b] = [a + b] and $[a] \cdot [b] = [ab]$. Are they well-defined?
 - \star Draw the addition and multiplication tables for $\mathbb{Z}_4.$

- ★ For [a] = [b] and [c] = [d] in \mathbb{Z}_p , if [a + c] = [b + d] and [ac] = [bd], then addition and multiplication in \mathbb{Z}_p are well defined.
- 3. Prove that the addition and multiplication are well defined in \mathbb{Z}_p .

4. If we define the "*-product" [a] * [b] = [q] where q is the quotient when ab is divided by 3 for equivalence classes [a] and [b] in \mathbb{Z}_3 , **disprove** that this *-product is well defined.