Existence Proofs

Our goal in this section is to prove a statement of the form
There exists x for which $P(x)$. (That is, $\exists x, P(x)$).
I. A constructive proof of existence: The proof is to display a specific value $x=a$ in a given set and verify that $P(a)$ is true.

EX: Prove that, for every natural number x, there exists a natural number y such that $2 x-y=-1$.
II. A nonconstructive proof of existence: Use theorems which imply the existence of an x such that $P(x)$ is true without indicating how to explicitly produce such x.

The Intermediate Value Theorem and the Mean Value Theorem are examples of existence theorems that can be used in this manner.
EX: Prove that there exists a real number x in $[-1,1]$ such that $2 x^{3}+1=0$.

Examples: A constructive proof of existence

1. Prove that there are pairs of irrational numbers x and y such that x^{y} is rational.
(This week's recitation: Prove that there are two distinct irrational numbers x and y such that x^{y} is rational.)
2. Prove that there exists an integer x such that $\frac{8 x+2}{3 x-1}=2$.
3. There exist distinct perfect squares x, y, and z such that $x+y=z$.
4. Prove that for $\varepsilon=1$, there exists a positive real number δ such that $|x-2|<\delta \Longrightarrow|(2 x+3)-7|<\varepsilon$.
(We will revisit the formal definition of a limit of a function in Chapter 12.)
5. There is a prime number p such that $p+2$ and $p+6$ are also prime numbers.
6. There exists an even integer n that can be written in two different ways as a sum of two distinct primes.

Examples: A nonconstructive proof of existence

- The Intermediate Value Theorem: If f is a function that is continuous on the closed interval $[a, b]$ and k is a number between $f(a)$ and $f(b)$, then there exists a number $c \in(a, b)$ such that $f(c)=k$.
- The Mean Value Theorem: If a function f is continuous on the closed interval $[a, b]$, and differentiable on the open interval (a, b), then there exists a point $c \in(a, b)$ such that $f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$.

Examples

1. There exists a solution for the equation $x^{3}+3 x-2=0$ in the interval $(0,1)$.
2. Let $f(x)=4 x^{5}-x+2$. Prove that there exists a $c \in(0,1)$ such that $f^{\prime}(c)=3$. Note that $f(0)=2$ and $f(1)=5$.

Unique Existence. Examples.

1. An equation $x^{5}+4 x-1=0$ has exactly one solution.
2. Prove that, for every x, there exists a unique $y \in \mathbb{R}$ such that $2 x+1=2 y-1$.
(1) Prove the existence y to $2 x+1=2 y-1$.
(2) Prove the uniqueness by contradiction.

Disproving Existence Statements

$$
\sim(\exists x \in S, P(x)) \equiv \forall x \in S, \sim P(x)
$$

If the statement, " $\exists x \in S, P(x)$ ", is false, every $x \in S$ satisfies " $\sim P(x)$ ".

Examples: Disprove the statements

1. There is a real number x for which $x^{4}-6 x^{2}+2<-7$.
2. There exist odd integers a and b such that $4 \mid\left(3 a^{2}+7 b^{2}\right)$. (Textbook).
