In general, to prove two sets A and B are equal, we need to show that both $A \subseteq B$ and $B \subseteq A$ are true.

$$
A \subseteq B: \forall x \in A, x \in B
$$

EXAMPLES.

(1H) $A-B=A \cap \bar{B}$
(2) $\overline{(A \cap B)}=\bar{A} \cup \bar{B}$
(3H) Let $A=\{x: x \equiv 1(\bmod 4)\}$ and $B=\{x: x \equiv 1(\bmod 2)\}$.
Prove that $A \subset B$.
(4) Let $A=\{x: x \equiv 0(\bmod 2)\}$ and $B=\{x: x \equiv 0(\bmod 3)\}$ and $C=\{x: x \equiv$ $0(\bmod 6)\}$. Prove that $C \subseteq A \cap B$.
(We will later prove $C=A \cap B$.)

Exercises Let A, B and C be subsets of the universal set U. Prove the following.
(1) If $A \subseteq B$, then $A \cap B=A$.
(2H) $A \cup B=A$ if and only if $B \subseteq A$.
$(3 \mathrm{H})(A \cup B)-(A \cap B)=(A-B) \cup(B-A)$.
(4) $A-(B \cup C)=(A-B) \cap(A-C)$.

Fundamental Properties of Set Operations For sets A, B and C,

1. Commutative Laws
(1) $A \cup B=B \cup A$ (textbook)
(2) $A \cap B=B \cap A$
2. Associative Laws
(1) $A \cup(B \cup C)=(A \cup B) \cup C$
(2) $A \cap(B \cap C)=(A \cap B) \cap C$
3. Distributive Laws
(1) $A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$ (textbook)
(2) $A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$
4. De Morgan's Laws
(1) $\overline{A \cup B}=\bar{A} \cap \bar{B}$ (textbook)
(2) $\overline{A \cap B}=\bar{A} \cup \bar{B}$ (example)

Proofs Involving Cartesian Products of Sets Let A, B, C and D be subsets of the universal set U. Prove the following.

1. $(A \times B) \cap(C \times D)=(A \cap C) \times(B \cap D)$.
(Remark: $(A \times C) \cup(B \times D) \neq(A \cup B) \times(C \cup D)$.
2. If $A \subseteq C$ and $B \subseteq D$, then $A \times B \subseteq C \times D$. (textbook)
3. $A \times(B \cap C)=(A \times B) \cap(A \times C)$.
4. $A \times(B \cup C)=(A \times B) \cup(A \times C)$.
5. $A \times(B-C)=(A \times B)-(A \times C)$. (textbook $)$
6. (Challenge) $\overline{(A \times B)}=(\bar{A} \times \bar{B}) \cup(\bar{A} \times B) \cup(A \times \bar{B})$.

Exercises

1. $(A \cap B) \cap\left(A^{c} \cup B^{c}\right)=\emptyset$. (This is a proof by contradiction, so we will revisit this problem later)
2. $(A \cap B) \cup\left(A^{c} \cup B^{c}\right)=U$. (Proof this statement directly by using the definitions, not the fundamental properties)
