In general, to prove two sets A and B are equal, we need to show that both $A \subseteq B$ and $B \subseteq A$ are true.

 $A\subseteq B:\,\forall x\in A,\,x\in B.$

EXAMPLES.

- (1H) $A B = A \cap \overline{B}$
 - (2) $\overline{(A \cap B)} = \overline{A} \cup \overline{B}$

- (3H) Let $A = \{x : x \equiv 1 \pmod{4}\}$ and $B = \{x : x \equiv 1 \pmod{2}\}$. Prove that $A \subset B$.
 - (4) Let $A = \{x : x \equiv 0 \pmod{2}\}$ and $B = \{x : x \equiv 0 \pmod{3}\}$ and $C = \{x : x \equiv 0 \pmod{3}\}$. $0 \pmod{6}\}$. Prove that $C \subseteq A \cap B$. (We will later prove $C = A \cap B$.)

Exercises Let A, B and C be subsets of the universal set U. Prove the following.

(1) If $A \subseteq B$, then $A \cap B = A$.

- (2H) $A \cup B = A$ if and only if $B \subseteq A$.
- (3H) $(A \cup B) (A \cap B) = (A B) \cup (B A).$
 - (4) $A (B \cup C) = (A B) \cap (A C).$

Fundamental Properties of Set Operations For sets A, B and C,

- 1. Commutative Laws
 - (1) $A \cup B = B \cup A$ (textbook)
 - (2) $A \cap B = B \cap A$
- 2. Associative Laws
 - (1) $A \cup (B \cup C) = (A \cup B) \cup C$
 - (2) $A \cap (B \cap C) = (A \cap B) \cap C$
- 3. Distributive Laws
 - (1) $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ (textbook)
 - (2) $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

- 4. De Morgan's Laws
 - (1) $\overline{A \cup B} = \overline{A} \cap \overline{B}$ (textbook)
 - (2) $\overline{A \cap B} = \overline{A} \cup \overline{B}$ (example)

Proofs Involving Cartesian Products of Sets Let A, B, C and D be subsets of the universal set U. Prove the following.

1. $(A \times B) \cap (C \times D) = (A \cap C) \times (B \cap D).$

(Remark: $(A \times C) \cup (B \times D) \neq (A \cup B) \times (C \cup D)$.)

- 2. If $A \subseteq C$ and $B \subseteq D$, then $A \times B \subseteq C \times D$. (textbook)
- 3. $A \times (B \cap C) = (A \times B) \cap (A \times C).$
- 4. $A \times (B \cup C) = (A \times B) \cup (A \times C).$
- 5. $A \times (B C) = (A \times B) (A \times C)$. (textbook)
- 6. (Challenge) $\overline{(A \times B)} = (\overline{A} \times \overline{B}) \cup (\overline{A} \times B) \cup (A \times \overline{B}).$

Exercises

- 1. $(A \cap B) \cap (A^c \cup B^c) = \emptyset$. (This is a proof by contradiction, so we will revisit this problem later)
- 2. $(A \cap B) \cup (A^c \cup B^c) = U$. (Proof this statement directly by using the definitions, not the fundamental properties)