Properties:

- A1 For all real numbers a, b, c, if $a \leq b$ and $b \leq c$ then $a \leq c$.
- A2 For all real numbers a, b, c, if $a \le b$ then $a + c \le b + c$.
- A3 For all real numbers a, b, c, if $a \leq b$ and $0 \leq c$ then $ac \leq bc$.

Prove the statements below using A1-A3, together with any basic facts about equality =.

- 1. For all real numbers a, if $a \leq 0$ then $0 \leq -a$.
- 2. For all real numbers $a, a^2 \ge 0$.
- 3. For all real numbers $a, b, ab \leq \frac{1}{2}(a^2 + b^2)$. *Hint: Consider* $(a b)^2$.

4. For all real numbers a, b, δ , if $\delta \neq 0$ then $ab \leq \frac{1}{2}(\delta^2 a^2 + \delta^{-2}b^2)$.

5. For all real numbers $a, b, ab = \frac{1}{2}(a^2 + b^2)$ if and only if a = b.

Working Backwards

Inequality between arithmetic and geometric mean. If $a, b \in \mathbb{R}$ with $a \ge 0$ and $b \ge 0$, then $\frac{a+b}{2} \ge \sqrt{ab}$.

Scratch work:

- 1. Start with the inequality you are asked to prove.
- 2. Simplify it as much as possible until you arrive at a statement that is obviously true.

Formal Proof:

- 3. In order to write formal proof, now start from the obviously true statement.
- 4. Use your previous work to guide you on how to arrive at the desired inequality.

Proving Equalities

Theorem: Let $x, y \in \mathbb{R}$. Then xy = 0 if and only if x = 0 or y = 0.

Prove the following:

1. Let $x \in \mathbb{R}$. If $x^3 - 3x^2 + x = 3$ then x = 3.

2. Let
$$x, y \in \mathbb{R}$$
, then $\frac{5}{6}x^2 + \frac{3}{10}y^2 \ge xy$.

Proving Inequalities

Triangle Inequality. Let $x, y \in \mathbb{R}$. Then $|x + y| \le |x| + |y|$.

Prove the following:

Let $x \in \mathbb{R}$, then $||x| - |y|| \le |x - y|$.

 ${\bf EX}.$ Using a "Triangle Inequality", prove the following implication.

If |x - 1| < 1 and |x - 1| < r/4 for r > 0 and $r \in \mathbb{R}$, then |(x + 2)(x - 1)| < r.