Definition: Let a, b be non-zero integers. We say b is **divisible** by a (or a divides b, or b is a multiple of a) if there is an integer x such that $a \cdot x = b$. And if this is the case, we write $a \mid b$, otherwise we write $a \nmid b$.

Exercise 1.

1. Prove that if $ab \mid ac$, then $b \mid c$, where $a, b, c \in \mathbb{Z}$, and $a \neq 0$.

2. Using the notion of *divisibility*, give a formal definition of an *even* and an *odd* integer.

Theorem 1. For all integers a, b, and c,

1. If $a \mid b$ and $a \mid c$, then $a \mid (b+c)$.

2. If $a \mid b$, then $a \mid (bc)$.

3. If $a \mid b$ and $b \mid c$, then $a \mid c$.

Exercises

1. If $a, b \in \mathbb{Z}$ and $a \ge 2$, then $a \nmid b$ or $a \nmid b + 1$.

2. Let $x \in \mathbb{Z}$. If 3 doesn't divide $x^2 - 1$, then 3|x.

3. Let $n \in \mathbb{Z}$. Then $3|(2n^2 + 1)$ if and only if $3 \nmid n$.

Remainder of division. Modulo operation.

1. Definition : x is divisible by y if $\exists k \in \mathbb{Z}$ such that $x = k \cdot y$.

If x is not divisible by 3, what are our options? For $k \in \mathbb{Z}$

- (1) x = 3k + 1.
- (2) x = 3k + 2.

Can we generalize this? What are the possibilities for x if x is not divisible by r?

Congruence modulo n

Definition : For integers x, y and $n \ge 2$, we say that x is **congruent** to y modulo n, written $x \equiv y \pmod{n}$ if $n \mid (x - y)$.

Example

• $1142 \equiv x \pmod{5}$. Find x for $x \in \{x \in \mathbb{Z} | 10 \le x \le 15\}$.

Each integer x can be expressed in exactly one of the following forms:

x = 2k or x = 2k + 1, for some $k \in \mathbb{Z}$.

Thus,

 $x \equiv 0 \pmod{2}$ or $x \equiv 1 \pmod{2}$

and only one of the above is possible.

How can we generalize this if the divisor is 5?

How about if the divisor is 8?

Theorem 1 . Given integers a, b, c, d and m, if $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then

- (1) $a + c \equiv b + d \pmod{m}$.
- (2) $a \cdot c \equiv b \cdot d \pmod{m}$.

Theorem 2. If n is a square number (perfect square), then $n \equiv 0 \pmod{4}$ or $n \equiv 1 \pmod{4}$.

Exercises

- 1. For $n \in \mathbb{Z}$, prove that $9n^2 + 3n 2$ is even.
- 2. Prove $n^2 2$ is not divisible by 3 if n is an integer.
- 3. If n is an integer not divisible by 3, then $n^2 = 1 \pmod{3}$.
- 4. Prove that if n is any integer which is not divisible by 5, then n^2 leaves a remainder of 1 or 4 when it is divided by 5.
- 5. What cases should we consider if we would like to prove that if n is a positive integer then $n^7 n$ is divisible by 7?