Definition: Let a, b be non-zero integers. We say b is divisible by a (or a divides b, or b is a multiple of a) if there is an integer x such that $a \cdot x=b$. And if this is the case, we write $a \mid b$, otherwise we write $a \nmid b$.

Exercise 1.

1. Prove that if $a b \mid a c$, then $b \mid c$, where $a, b, c \in \mathbb{Z}$, and $a \neq 0$.
2. Using the notion of divisibility, give a formal definition of an even and an odd integer.

Theorem 1. For all integers a, b, and c,

1. If $a \mid b$ and $a \mid c$, then $a \mid(b+c)$.
2. If $a \mid b$, then $a \mid(b c)$.
3. If $a \mid b$ and $b \mid c$, then $a \mid c$.

Exercises

1. If $a, b \in \mathbb{Z}$ and $a \geq 2$, then $a \nmid b$ or $a \nmid b+1$.
2. Let $x \in \mathbb{Z}$. If 3 doesn't divide $x^{2}-1$, then $3 \mid x$.
3. Let $n \in \mathbb{Z}$. Then $3 \mid\left(2 n^{2}+1\right)$ if and only if $3 \nmid n$.

Remainder of division. Modulo operation.

1. Definition : x is divisible by y if $\exists k \in \mathbb{Z}$ such that $x=k \cdot y$.

If x is not divisible by 3 , what are our options? For $k \in \mathbb{Z}$
(1) $x=3 k+1$.
(2) $x=3 k+2$.

Can we generalize this? What are the possibilities for x if x is not divisible by r ?

Congruence modulo n

Definition: For integers x, y and $n \geq 2$, we say that x is congruent to y modulo n, written $x \equiv y(\bmod n)$ if $n \mid(x-y)$.

Example

- $1142 \equiv x(\bmod 5)$. Find x for $x \in\{x \in \mathbb{Z} \mid 10 \leq x \leq 15\}$.

Each integer x can be expressed in exactly one of the following forms:

$$
x=2 k \quad \text { or } \quad x=2 k+1, \quad \text { for some } k \in \mathbb{Z} .
$$

Thus,

$$
x \equiv 0(\bmod 2) \quad \text { or } \quad x \equiv 1(\bmod 2)
$$

and only one of the above is possible.

How can we generalize this if the divisor is 5 ?

How about if the divisor is 8 ?

Theorem 1 . Given integers a, b, c, d and m, if $a \equiv b(\bmod m)$ and $c \equiv d(\bmod m)$, then
(1) $a+c \equiv b+d(\bmod m)$.
(2) $a \cdot c \equiv b \cdot d(\bmod m)$.

Theorem 2. If n is a square number (perfect square), then $n \equiv 0(\bmod 4)$ or $n \equiv 1(\bmod 4)$.

Exercises

1. For $n \in \mathbb{Z}$, prove that $9 n^{2}+3 n-2$ is even.
2. Prove $n^{2}-2$ is not divisible by 3 if n is an integer.
3. If n is an integer not divisible by 3 , then $n^{2}=1(\bmod 3)$.
4. Prove that if n is any integer which is not divisible by 5 , then n^{2} leaves a remainder of 1 or 4 when it is divided by 5 .
5. What cases should we consider if we would like to prove that if n is a positive integer then $n^{7}-n$ is divisible by 7 ?
