
MTH299 Final Exam Review

1. Describe the elements of the set (Z×Q) ∩ R× N.
Is this set countable or uncountable?

Solution: The set is equal to
{(x, y) | x ∈ Z, y ∈ N} = Z×N. Since the Cartesian
product of two denumerable sets is denumerable,
this set is denumerable, hence countable.

2. Let A = {∅, {∅}}. What is the cardinality of A? Is
∅ ⊂ A? Is ∅ ∈ A? Is {∅} ⊂ A? Is {∅} ∈ A? Is
{∅, {∅}} ∈ A?

Solution: |A| = 2; it has two elements: ∅ and {∅}.
The answers to the remaining questions are yes,
yes, yes, yes, no.

3. List the elements of the set A×B where A is the
set in the previous question and B = {1, 2}.
Solution: A×B = {(∅, 1), (∅, 2), ({∅}, 1), ({∅}, 2)}.

4. Suppose that A, B, and C are sets. Which of the
following statements is true for all sets A, B, and
C? For each, either prove the statement or give a
counterexample: (A ∩B) ∪ C = A ∩ (B ∪ C),
A ∩B ⊆ A ∪B, if A ⊂ B then A×A ⊂ A×B,
A ∩B ∩ C = A ∪B ∪ C.

Solution: (A ∩B) ∪ C 6= A ∩ (B ∪ C) in general; a
counterexample is
A = {1, 2}, B = {1, 3}, C = {1, 4}. Then
(A ∩B) ∪ C = {1, 4}, whereas A ∩ (B ∪ C) = {1}.
A ∩B ⊂ A ∪B is true. If x ∈ A ∩B, then x ∈ A.
So, x ∈ A ∪B.

A ⊂ B =⇒ A×A ⊂ A×B is true. If
(x, y) ∈ A×A, then x, y ∈ A. Therefore, y ∈ B.
Therefore, (x, y) ∈ A×B.

A ∩B ∩ C = A ∪B ∪ C is true. Recall that ∩ and
∪ satisfy associative laws. Thus,

A ∩B ∩ C = (A ∩B) ∩ C = A ∪B ∩ C,

by De Morgan’s law. Another application of De
Morgan’s law yields

(A ∪B) ∪ C = A ∪B ∪ C.

5. State the negation of each of the following
statements:

• There exists a natural number m such that
m3 −m is not divisible by 3.

•
√

3 is a rational number.

• 1 is a negative integer.

• 57 is a prime number.

6. Verify the following laws:

• (a) Let P,Q and R are statements. Then,

P ∧ (Q ∨R) and (P ∧Q) ∨ (P ∧R) are
logically equivalent.

• (b) Let P and Q are statements. Then,

P ⇒ Q and (∼ Q)⇒ (∼ P ) are logically
equivalent.

7. Write the open statement P (x, y) : ”for all real x
and y the value (x− 1)2 + (y − 3)2 is positive”
using quantifiers. Is the quantified statement true
or false? Explain.

8. Prove that 3x + 7 is odd if and only if x is even.

Solution: First, we will prove that if x is even, then
3x+ 7 is odd. Assume x is even. Then ∃k ∈ Z such
that x = 2k. Therefore,
3x + 7 = 6k + 7 = 2(3k + 3) + 1 = 2s + 1, where
s = 3k + 3 ∈ Z. Thus, 3x + 7 is odd. Now, we need
to prove that if 3x + 7 is odd, then x is even. We
are going to prove the equivalent, contrapositive
statement. Assume x is odd. Then ∃k ∈ Z such
that x = 2k + 1. Therefore,
3x + 7 = 6k + 3 + 7 = 2(3k + 5) = 2s, where
s = 3k + 5 ∈ Z. Thus, 3x + 7 is even. Thus, 3x + 7
is odd if and only if x is even.

9. Prove that if a and b are positive numbers, the
√
ab ≤ a + b

2
. This is referred to as “Inequality

between geometric and arithmetic mean.”

Solution: Let a, b ∈ R+. Then (a− b) ∈ R and thus
(a− b)≥0. The following inequalities are equivalent.

(a− b)2 ≥ 0

a2 − 2ab + b2 ≥ 0

a2 + 2ab + b2 ≥ 4ab

(a + b)2 ≥ 4ab

a + b ≥ 2
√
ab

a + b

2
≥
√
ab.

Thus, we have arrived at the desired inequality,
which holds true for all a, b ∈ R.

10. Let A,B, and C be sets. Prove that
A× (B

⋂
C) = (A×B)

⋂
(A× C).

Solution: First, we will prove that
A× (B

⋂
C) ⊆ (A×B)

⋂
(A× C). Let

(x, y) ∈ A× (B
⋂

C) be an arbitrary element.
Then, x ∈ A and y ∈ B and y ∈ C. Thus,
(x, y) ∈ A×B and (x, y) ∈ A× C. Therefore,
(x, y) ∈ (A×B)

⋂
(A× C). Thus, we can conclude

that A× (B
⋂

C) ⊆ (A×B)
⋂

(A× C).

1 SS14



MTH299 Final Exam Review

Now, we need to prove that that
(A×B)

⋂
(A× C) ⊆ A× (B

⋂
C). Take an

arbitrary element (x, y) ∈ (A×B)
⋂

(A× C).
Then, (x, y) ∈ (A×B) and (x, y) ∈ (A× C).
Therefore, x ∈ A and y ∈ B and y ∈ C. Thus,
y ∈ B

⋂
C, which implies (x, y) ∈ A× (B

⋂
C).

Since we have proven both inclusions, we can
conclude the desired equality of sets, namely,
A× (B

⋂
C) = (A×B)

⋂
(A× C).

11. Let A,B, and C be sets. Prove that
(A−B)

⋂
(A− C) = A− (B

⋃
C).

12. Suppose that x and y are real numbers. Prove that
if x + y is irrational, then x is irrational or y is
irrational.

Solution: We will instead prove the contrapositive
statement, which is equivalent to the original one.
Assume that x ∈ Q and y ∈ Q . Then ∃p, q, r, s ∈ Z
such that x = p

q and y = r
s . Then

x + y =
sp + qr

sq
∈ Z. (Alternatively, we can use

the fact that Q is closed under addition.) Thus, if
x and y ∈ Q, then x + y ∈ Q.

13. Let x be an irrational number. Prove that x4 or x5

is irrational.

Solution: We will instead prove the contrapositive
statement, which is equivalent to the original one,
namely, if x4 and x5 are rational, then x is rational.
Clearly, if x5 = 0, then x = 0, thus this case is
trivial. Thus, assume that x5 and x4 ∈ Q− {0}.
Then ∃p, q, r, s ∈ Z− {0} such that x5 = p

q and

x4 = r
s . Thus, x =

x5

x4
= ps

qr ∈ Q. This concludes

the proof of the contrapositive statement, thus the
original statement also holds true.

14. Use a proof by contradiction to prove the following.

There exist no natural numbers m such that
m2 + m + 3 is divisible by 4.

15. Let a, b be distinct primes. Then loga(b) is
irrational.

16. Prove or disprove the statement: there exists an
integer n such that n2 − 3 = 2n.

17. Prove or disprove the statement: there exists a real
number x such that x4 + 2 = 2x2.

18. Prove that there exists a unique real number x
such that x3 + 2 = 2x.

19. Disprove that statement: There exists integers a
and b such that a2 + b2 ≡ 3 (mod 4)

20. Use induction to prove that 6|(n3 + 5n) for all
n ≥ 0.

21. Use induction to prove that

1 · 4 + 2 · 7 + · · ·+ n(3n + 1) = n(n + 1)2

for all n ∈ N.

22. Use the Strong Principle of Mathematical
Induction to prove that for each integer n ≥ 11,
there are nonnegative integers x and y such that
n = 4x + 5y.

23. A sequence {an} is defined recursively by a0 = 1,
a1 = −2 and for n ≥ 1,

an+1 = 5an − 6an−1.

Prove that for n ≥ 0,

an = 5× 2n − 4× 3n.

24. Suppose R is an equivalence relation on a set A.
Prove or disprove that R−1 is an equivalence
relation on A.

Solution: If R is an equivalence relation, then so is
R−1 = {(y, x) ∈ A×A | (x, y) ∈ R}.
Proof 1: Let a ∈ A. Then since R is reflexive we
have (a, a) ∈ R. It follows from the definition of
R−1 that (a, a) ∈ R−1, proving that R−1 is
reflexive as well. To show that R−1 is symmetric,
let (a, b) ∈ R−1. Then by definition (b, a) ∈ R.
Since R is symmetric, (a, b) ∈ R as well, and so
(b, a) ∈ R−1. To prove that R−1 is transitive, let
(a, b), (b, c) ∈ R−1. Then (b, a), (c, b) ∈ R, and since
R is symmetric, it follows that (a, b), (b, c) ∈ R. By
the transitivity of R, we have (a, c) ∈ R and so
(c, a) ∈ R−1. Finally, since R−1 is symmetric, it
follows that (a, c) ∈ R−1, which shows R−1 is
transitive.

Proof 2: We will show that R = R−1, and so R−1

will automatically be an equivalence relation
because we have assumed R is. Let (a, b) ∈ R.
Since R is symmetric, (b, a) ∈ R. By the definition
of R−1 it follows that (a, b) ∈ R−1, which shows
R ⊆ R−1. The reverse inclusion is similar.

25. Consider the set A = {a, b, c, d}, and suppose R is
an equivalence relation on A. If R contains the
elements (a, b) and (b, d), what other elements
must it contain?

Solution: In addition to (a, b) and (b, d), the
equivalence relation R must contain

(a, a), (b, b), (c, c), (d, d)
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(b, a), (d, b)

(a, d)

(d, a)

The elements in the first row appear due to
reflexivity; the elements in the second are due to
symmetry; the element in the third row is due to
transitivity; the element in the last row is due to
symmetry from the previous row.

26. Let A = {a1, a2, a3} and B = {b1, b2}. Find a
relation on A×B that is transitive and symmetric,
but not reflexive.

Solution 1: Take R = ∅ ⊂ (A×B)× (A×B).

Solution 2: Take R = {((a1, b1), (a1, b1))}. This is
obviously symmetric (switch (a1, b1) with itself),
and it is transitive. It is not reflexive because it is
missing, say, ((a2, b1), (a2, b1)).

There are many other solutions that are possible.
Note that if ((ai, bj), (ak, bl)) is in the relation,
then so is ((ak, bl), (ai, bj)) by symmetry, and
hence ((ai, bj), (ai, bj)) and ((ak, bl), (ak, bl)) are in
the relation as well. In particular, to ensure that it
is not reflexive, you need to make sure there is at
least one element of A×B that does not appear as
a component of any element of the relation.

27. Suppose A is a finite set and R is an equivalence
relation on A.

(a) Prove that |A| ≤ |R|.
Solution: Since R is reflexive, if a ∈ A then
(a, a) ∈ R. In particular, the map f : A→ R
defined by f(a) = (a, a) is well-defined. This
is obviously injective, and so |A| ≤ |R|.

(b) If |A| = |R|, what can you conclude about R?

Solution: If |A| = |R| then R contains no
more elements than those in the image of f
from part (a). This implies that
R = {(a, a) | a ∈ A} is the diagonal
equivalence relation.

28. Consider the relation R ⊂ Z4 × Z6 defined by

R = {(x mod 4, 3x mod 6) | x ∈ Z} .

Prove that R is a function from Z4 to Z6. Is R a
bijective function?

Solution: We need to show two things: (1) For
every a ∈ Z4 there is some b ∈ Z6 such that
(a, b) ∈ R; (2) If (a, b), (a, b′) ∈ R then b = b′. The
first follows immediately from the definition of R:
if a = [x] ∈ Z4, and x ∈ [x] is any integer, then

take b to be the mod 6 reduction of x, and so we
have (a, b) ∈ Z4 × Z6. To prove (2), suppose
(a, b), (a, b′) ∈ R. Then we have

(a, b) = (x mod 4, 3x mod 6),

(a, b′) = (y mod 4, 3y mod 6)

for some integers x, y. We obviously have
x mod 4 = y mod 4 and so x = y + 4k for some
integer k. This gives 3x = 3y + 12k and so
b = 3x (mod 6) = 3y (mod 6) = b′, as desired.

29. Consider the relation S ⊂ Z4 × Z6 defined by

S = {(x mod 4, 2x mod 6) | x ∈ Z} .

Prove that S is not a function from Z4 to Z6.

Solution: This fails item (2) in the solution to the
previous problem (it satisfies item (1)): We have

0 (mod 4) = 4 (mod 4),

but
2 · 0 (mod 6) 6= 2 · 4 (mod 6).

30. Suppose f : A→ B and g : X → Y are bijective
functions. Define a new function
h : A×X → B × Y by h(a, x) = (f(a), g(x)).
Prove that h is bijective.

Solution: First we show h is injective. Suppose
h(a, x) = h(a′, x′). Then f(a) = f(a′) and
g(x) = g(x′). Since each of these is injective, it
follows that a = a′ and x = x′, which is equivalent
to saying (a, x) = (a′, x′).

To see that h is surjective, let (b, y) ∈ B × Y . Then
since f, g are surjective, there are a ∈ A and x ∈ X
such that f(a) = b and g(x) = y. It follows that
h(a, x) = (b, y).

31. Prove or disprove: Suppose f : A→ B and
g : B → C are functions. Then g ◦ f is bijective if
and only if f is injective and g is surjective.

Solution: The direction (⇐) is false. Indeed,
consider the case where A = B, and take f to be
the identity function (this is obviously injective).
Now take g to be any function that is surjective
but not injective. Then g ◦ f = g is not injective,
and so certainly not bijective.

The direction (⇒) is true. To see this, suppose
g ◦ f is bijective. If f(a) = f(a′), then
(g ◦ f)(a) = (g ◦ f)(a′) and so a = a′ since g ◦ f is
injective. To see surjectivity, let c ∈ C. Then since
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g ◦ f is surjective, it follows that there is some
a ∈ A with (g ◦ f)(a) = c. Now take b = f(a), and
so g(b) = c.

32. (X points) Let R+ denote the set of positive real
numbers and let A and B be denumerable subsets
of R+. Define C = {x ∈ R : −x/2 ∈ B}. Show that
A ∪ C is denumerable.

33. Prove that the interval (0, 1) is numerically
equivalent to the interval (0,+∞).

34. Prove the following statement: A nonemty set S is
countable if and only if there exists an injective
function g : S → N.

35. Compute the greatest common divisor of 42 adn 13
and then express the greatest common divisor as a
linear combination of 42 and 13.

Solution: 42 = 39 + 3 = 3(13) + 3;
13 = 12 + 1 = 4(3) + 1; 3 = 3(1) + 0. Therefore, the
gcd is equal to 1. Working backwards, we have that
1 = 13−4(3) = 13−4(42−3(13) = 13(13)+(−4)42.

36. Let a, b, c ∈ Z. Prove that if c is a common divisor
of a and b, then c divides any linear combination of
a and b.

Solution: Suppose c is a common divisor of a and b
and let ax + by, where x, y ∈ Z, be a linear
combination of a and b. Then c | a and c | b.
Therefore, a = cm and b = cn for some m,n ∈ Z.
It follows that ax + by = cmx + cny = c(mx + ny).
Therefore, c | (ax + by).

37. Define the term “p is a prime”. Then prove that if
a, p ∈ Z, p is prime, and p does not divide a, then
gcd(a, p) = 1.

Solution: A number p is prime if p is a positive
integer greater than one and whenever p = ab for
some positive integers a and b, then a = 1 or b = 1.

Suppose that p is prime and that a ∈ Z is not
divisible by p. Since p and a are not both zero,
there is a greatest common divisor d. If d > 1, then
d | p implies that d = p since the only divisors of p
are 1 and p. Since d | a, this implies that p | a
which is a contradiction. Therefore, d cannot be
greater than 1. Hence, d = 1.

38. The greatest common divisor of three integers
a, b, c is the largest positive integer which divides
all three. We denote this greatest common divisor
by gcd(a, b, c). Assume that a and b are not both
zero. Prove the following equation:

gcd(a, b, c) = gcd(gcd(a, b), c).

Solution: Let d be the gcd of a, b, and c. Let e be
the gcd of a and b. Let f be the gcd of e and c. We
prove that d = f . Since e is a linear combination of
a and b, d | e. Since d | c, and f is a linear
combination of e and c, it follows that d divides f .
Therefore d ≤ f .

On the other hand, f | e and f | c. Since e | a and
e | b, f | a and f | b. Thus, f is a common divisor
of a, b, and c. Hence, f ≤ d. Therefore, f = d.

39. By using the formal definition of the limit of the
sequence, without assuming any propositions about
limits, prove the following:

lim
n→∞

3n + 1

n− 2
= 3.

40. By using the formal definition of the limit of the
sequence, without assuming any propositions about
limits, prove that

lim
n→∞

(−1)n3n + 1

n− 2

does not exist.

41. Let (an) be a sequence with positive terms such
that limn→∞ an = 1. By using the formal definition
of the limit of the sequence, prove the following:

lim
n→∞

3an + 1

2
= 2.

42. (a) Use induction to prove

1

2 · 4
+

1

4 · 6
+ · · ·+ 1

2n(2n + 2)
=

n

4(n + 1)

for all n ∈ N.

(b) Prove

∞∑
k=1

1

2k(2k + 2)
=

1

4
.
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