1. Describe the elements of the set $(\mathbb{Z} \times \mathbb{Q}) \cap \mathbb{R} \times \mathbb{N}$. Is this set countable or uncountable?
Solution: The set is equal to
$\{(x, y) \mid x \in \mathbb{Z}, y \in \mathbb{N}\}=\mathbb{Z} \times \mathbb{N}$. Since the Cartesian product of two denumerable sets is denumerable, this set is denumerable, hence countable.
2. Let $A=\{\emptyset,\{\emptyset\}\}$. What is the cardinality of A ? Is $\emptyset \subset A$? Is $\emptyset \in A$? Is $\{\emptyset\} \subset A$? Is $\{\emptyset\} \in A$? Is $\{\emptyset,\{\emptyset\}\} \in A$?
Solution: $|A|=2$; it has two elements: \emptyset and $\{\emptyset\}$. The answers to the remaining questions are yes, yes, yes, yes, no.
3. List the elements of the set $A \times B$ where A is the set in the previous question and $B=\{1,2\}$.
Solution: $A \times B=\{(\emptyset, 1),(\emptyset, 2),(\{\emptyset\}, 1),(\{\emptyset\}, 2)\}$.
4. Suppose that A, B, and C are sets. Which of the following statements is true for all sets A, B, and C ? For each, either prove the statement or give a counterexample: $(A \cap B) \cup C=A \cap(B \cup C)$, $\underline{A} \cap \underline{B} \subseteq A \cup B$, if $A \subset B$ then $A \times A \subset A \times B$, $\bar{A} \cap \bar{B} \cap \bar{C}=\overline{A \cup B \cup C}$.
Solution: $(A \cap B) \cup C \neq A \cap(B \cup C)$ in general; a counterexample is
$A=\{1,2\}, B=\{1,3\}, C=\{1,4\}$. Then
$(A \cap B) \cup C=\{1,4\}$, whereas $A \cap(B \cup C)=\{1\}$.
$A \cap B \subset A \cup B$ is true. If $x \in A \cap B$, then $x \in A$. So, $x \in A \cup B$.
$A \subset B \Longrightarrow A \times A \subset A \times B$ is true. If
$(x, y) \in A \times A$, then $x, y \in A$. Therefore, $y \in B$. Therefore, $(x, y) \in A \times B$.
$\bar{A} \cap \bar{B} \cap \bar{C}=\overline{A \cup B \cup C}$ is true. Recall that \cap and \cup satisfy associative laws. Thus,

$$
\bar{A} \cap \bar{B} \cap \bar{C}=(\bar{A} \cap \bar{B}) \cap \bar{C}=\overline{A \cup B} \cap \bar{C}
$$

by De Morgan's law. Another application of De Morgan's law yields

$$
\overline{(A \cup B) \cup C}=\overline{A \cup B \cup C} .
$$

5. State the negation of each of the following statements:

- There exists a natural number m such that $m^{3}-m$ is not divisible by 3 .
- $\sqrt{3}$ is a rational number.
- 1 is a negative integer.
- 57 is a prime number.

6. Verify the following laws:

- (a) Let P, Q and R are statements. Then, $P \wedge(Q \vee R)$ and $(P \wedge Q) \vee(P \wedge R)$ are
- (b) Let P and Q are statements. Then, $P \Rightarrow Q$ and $(\sim Q) \Rightarrow(\sim P)$ are logically equivalent.

7. Write the open statement $P(x, y)$: "for all real x and y the value $(x-1)^{2}+(y-3)^{2}$ is positive" using quantifiers. Is the quantified statement true or false? Explain.
8. Prove that $3 x+7$ is odd if and only if x is even.

Solution: First, we will prove that if x is even, then $3 x+7$ is odd. Assume x is even. Then $\exists k \in \mathbb{Z}$ such that $x=2 k$. Therefore,
$3 x+7=6 k+7=2(3 k+3)+1=2 s+1$, where $s=3 k+3 \in \mathbb{Z}$. Thus, $3 x+7$ is odd. Now, we need to prove that if $3 x+7$ is odd, then x is even. We are going to prove the equivalent, contrapositive statement. Assume x is odd. Then $\exists k \in \mathbb{Z}$ such that $x=2 k+1$. Therefore,
$3 x+7=6 k+3+7=2(3 k+5)=2 s$, where
$s=3 k+5 \in \mathbb{Z}$. Thus, $3 x+7$ is even. Thus, $3 x+7$ is odd if and only if x is even.
9. Prove that if a and b are positive numbers, the $\sqrt{a b} \leq \frac{a+b}{2}$. This is referred to as "Inequality between geometric and arithmetic mean."
Solution: Let $a, b \in \mathbb{R}^{+}$. Then $(a-b) \in \mathbb{R}$ and thus $(a-b) \geq 0$. The following inequalities are equivalent.

$$
\begin{aligned}
(a-b)^{2} & \geq 0 \\
a^{2}-2 a b+b^{2} & \geq 0 \\
a^{2}+2 a b+b^{2} & \geq 4 a b \\
(a+b)^{2} & \geq 4 a b \\
a+b & \geq 2 \sqrt{a b} \\
\frac{a+b}{2} & \geq \sqrt{a b}
\end{aligned}
$$

Thus, we have arrived at the desired inequality, which holds true for all $a, b \in \mathbb{R}$.
10. Let A, B, and C be sets. Prove that $A \times(B \bigcap C)=(A \times B) \bigcap(A \times C)$.
Solution: First, we will prove that $A \times(B \bigcap C) \subseteq(A \times B) \bigcap(A \times C)$. Let $(x, y) \in A \times(B \bigcap C)$ be an arbitrary element. Then, $x \in A$ and $y \in B$ and $y \in C$. Thus, $(x, y) \in A \times B$ and $(x, y) \in A \times C$. Therefore, $(x, y) \in(A \times B) \bigcap(A \times C)$. Thus, we can conclude that $A \times(B \bigcap C) \subseteq(A \times B) \bigcap(A \times C)$.

Now, we need to prove that that
$(A \times B) \bigcap(A \times C) \subseteq A \times(B \bigcap C)$. Take an arbitrary element $(x, y) \in(A \times B) \bigcap(A \times C)$. Then, $(x, y) \in(A \times B)$ and $(x, y) \in(A \times C)$. Therefore, $x \in A$ and $y \in B$ and $y \in C$. Thus, $y \in B \bigcap C$, which implies $(x, y) \in A \times(B \bigcap C)$.
Since we have proven both inclusions, we can conclude the desired equality of sets, namely, $A \times(B \bigcap C)=(A \times B) \bigcap(A \times C)$.
11. Let A, B, and C be sets. Prove that
$(A-B) \bigcap(A-C)=A-(B \bigcup C)$.
12. Suppose that x and y are real numbers. Prove that if $x+y$ is irrational, then x is irrational or y is irrational.

Solution: We will instead prove the contrapositive statement, which is equivalent to the original one. Assume that $x \in \mathbb{Q}$ and $y \in \mathbb{Q}$. Then $\exists p, q, r, s \in \mathbb{Z}$ such that $x=\frac{p}{q}$ and $y=\frac{r}{s}$. Then
$x+y=\frac{s p+q r}{s q} \in \mathbb{Z}$. (Alternatively, we can use the fact that Q is closed under addition.) Thus, if x and $y \in \mathbb{Q}$, then $x+y \in \mathbb{Q}$.
13. Let x be an irrational number. Prove that x^{4} or x^{5} is irrational.
Solution: We will instead prove the contrapositive statement, which is equivalent to the original one, namely, if x^{4} and x^{5} are rational, then x is rational. Clearly, if $x^{5}=0$, then $x=0$, thus this case is trivial. Thus, assume that x^{5} and $x^{4} \in \mathbb{Q}-\{0\}$. Then $\exists p, q, r, s \in \mathbb{Z}-\{0\}$ such that $x^{5}=\frac{p}{q}$ and $x^{4}=\frac{r}{s}$. Thus, $x=\frac{x^{5}}{x^{4}}=\frac{p s}{q r} \in \mathbb{Q}$. This concludes the proof of the contrapositive statement, thus the original statement also holds true.
14. Use a proof by contradiction to prove the following.

There exist no natural numbers m such that $m^{2}+m+3$ is divisible by 4.
15. Let a, b be distinct primes. Then $\log _{a}(b)$ is irrational.
16. Prove or disprove the statement: there exists an integer n such that $n^{2}-3=2 n$.
17. Prove or disprove the statement: there exists a real number x such that $x^{4}+2=2 x^{2}$.
18. Prove that there exists a unique real number x such that $x^{3}+2=2 x$.
19. Disprove that statement: There exists integers a and b such that $a^{2}+b^{2} \equiv 3(\bmod 4)$
20. Use induction to prove that $6 \mid\left(n^{3}+5 n\right)$ for all $n \geq 0$.
21. Use induction to prove that

$$
1 \cdot 4+2 \cdot 7+\cdots+n(3 n+1)=n(n+1)^{2}
$$

for all $n \in \mathbb{N}$.
22. Use the Strong Principle of Mathematical Induction to prove that for each integer $n \geq 11$, there are nonnegative integers x and y such that $n=4 x+5 y$.
23. A sequence $\left\{a_{n}\right\}$ is defined recursively by $a_{0}=1$, $a_{1}=-2$ and for $n \geq 1$,

$$
a_{n+1}=5 a_{n}-6 a_{n-1}
$$

Prove that for $n \geq 0$,

$$
a_{n}=5 \times 2^{n}-4 \times 3^{n}
$$

24. Suppose R is an equivalence relation on a set A. Prove or disprove that R^{-1} is an equivalence relation on A.
Solution: If R is an equivalence relation, then so is $R^{-1}=\{(y, x) \in A \times A \mid(x, y) \in R\}$.
Proof 1: Let $a \in A$. Then since R is reflexive we have $(a, a) \in R$. It follows from the definition of R^{-1} that $(a, a) \in R^{-1}$, proving that R^{-1} is reflexive as well. To show that R^{-1} is symmetric, let $(a, b) \in R^{-1}$. Then by definition $(b, a) \in R$.
Since R is symmetric, $(a, b) \in R$ as well, and so $(b, a) \in R^{-1}$. To prove that R^{-1} is transitive, let $(a, b),(b, c) \in R^{-1}$. Then $(b, a),(c, b) \in R$, and since R is symmetric, it follows that $(a, b),(b, c) \in R$. By the transitivity of R, we have $(a, c) \in R$ and so $(c, a) \in R^{-1}$. Finally, since R^{-1} is symmetric, it follows that $(a, c) \in R^{-1}$, which shows R^{-1} is transitive.
Proof 2: We will show that $R=R^{-1}$, and so R^{-1} will automatically be an equivalence relation because we have assumed R is. Let $(a, b) \in R$. Since R is symmetric, $(b, a) \in R$. By the definition of R^{-1} it follows that $(a, b) \in R^{-1}$, which shows $R \subseteq R^{-1}$. The reverse inclusion is similar.
25. Consider the set $A=\{a, b, c, d\}$, and suppose R is an equivalence relation on A. If R contains the elements (a, b) and (b, d), what other elements must it contain?
Solution: In addition to (a, b) and (b, d), the equivalence relation R must contain

$$
(a, a),(b, b),(c, c),(d, d)
$$

$$
\begin{gathered}
(b, a),(d, b) \\
(a, d) \\
(d, a)
\end{gathered}
$$

The elements in the first row appear due to reflexivity; the elements in the second are due to symmetry; the element in the third row is due to transitivity; the element in the last row is due to symmetry from the previous row.
26. Let $A=\left\{a_{1}, a_{2}, a_{3}\right\}$ and $B=\left\{b_{1}, b_{2}\right\}$. Find a relation on $A \times B$ that is transitive and symmetric, but not reflexive.
Solution 1: Take $R=\emptyset \subset(A \times B) \times(A \times B)$.
Solution 2: Take $R=\left\{\left(\left(a_{1}, b_{1}\right),\left(a_{1}, b_{1}\right)\right)\right\}$. This is obviously symmetric (switch $\left(a_{1}, b_{1}\right)$ with itself), and it is transitive. It is not reflexive because it is missing, say, $\left(\left(a_{2}, b_{1}\right),\left(a_{2}, b_{1}\right)\right)$.
There are many other solutions that are possible. Note that if $\left(\left(a_{i}, b_{j}\right),\left(a_{k}, b_{l}\right)\right)$ is in the relation, then so is $\left(\left(a_{k}, b_{l}\right),\left(a_{i}, b_{j}\right)\right)$ by symmetry, and hence $\left(\left(a_{i}, b_{j}\right),\left(a_{i}, b_{j}\right)\right)$ and $\left(\left(a_{k}, b_{l}\right),\left(a_{k}, b_{l}\right)\right)$ are in the relation as well. In particular, to ensure that it is not reflexive, you need to make sure there is at least one element of $A \times B$ that does not appear as a component of any element of the relation.
27. Suppose A is a finite set and R is an equivalence relation on A.
(a) Prove that $|A| \leq|R|$. Solution: Since R is reflexive, if $a \in A$ then $(a, a) \in R$. In particular, the map $f: A \rightarrow R$ defined by $f(a)=(a, a)$ is well-defined. This is obviously injective, and so $|A| \leq|R|$.
(b) If $|A|=|R|$, what can you conclude about R ? Solution: If $|A|=|R|$ then R contains no more elements than those in the image of f from part (a). This implies that $R=\{(a, a) \mid a \in A\}$ is the diagonal equivalence relation.
28. Consider the relation $R \subset \mathbb{Z}_{4} \times \mathbb{Z}_{6}$ defined by

$$
R=\{(x \bmod 4,3 x \bmod 6) \mid x \in \mathbb{Z}\}
$$

Prove that R is a function from \mathbb{Z}_{4} to \mathbb{Z}_{6}. Is R a bijective function?
Solution: We need to show two things: (1) For every $a \in \mathbb{Z}_{4}$ there is some $b \in \mathbb{Z}_{6}$ such that $(a, b) \in R ;(2)$ If $(a, b),\left(a, b^{\prime}\right) \in R$ then $b=b^{\prime}$. The first follows immediately from the definition of R : if $a=[x] \in \mathbb{Z}_{4}$, and $x \in[x]$ is any integer, then
take b to be the mod 6 reduction of x, and so we have $(a, b) \in \mathbb{Z}_{4} \times \mathbb{Z}_{6}$. To prove (2), suppose $(a, b),\left(a, b^{\prime}\right) \in R$. Then we have

$$
\begin{aligned}
& (a, b)=(x \bmod 4,3 x \bmod 6) \\
& \left(a, b^{\prime}\right)=(y \bmod 4,3 y \bmod 6)
\end{aligned}
$$

for some integers x, y. We obviously have $x \bmod 4=y \bmod 4$ and so $x=y+4 k$ for some integer k. This gives $3 x=3 y+12 k$ and so $b=3 x(\bmod 6)=3 y(\bmod 6)=b^{\prime}$, as desired.
29. Consider the relation $S \subset \mathbb{Z}_{4} \times \mathbb{Z}_{6}$ defined by

$$
S=\{(x \bmod 4,2 x \bmod 6) \mid x \in \mathbb{Z}\}
$$

Prove that S is not a function from \mathbb{Z}_{4} to \mathbb{Z}_{6}.
Solution: This fails item (2) in the solution to the previous problem (it satisfies item (1)): We have

$$
0(\bmod 4)=4(\bmod 4)
$$

but

$$
2 \cdot 0(\bmod 6) \neq 2 \cdot 4(\bmod 6)
$$

30. Suppose $f: A \rightarrow B$ and $g: X \rightarrow Y$ are bijective functions. Define a new function
$h: A \times X \rightarrow B \times Y$ by $h(a, x)=(f(a), g(x))$.
Prove that h is bijective.
Solution: First we show h is injective. Suppose $h(a, x)=h\left(a^{\prime}, x^{\prime}\right)$. Then $f(a)=f\left(a^{\prime}\right)$ and $g(x)=g\left(x^{\prime}\right)$. Since each of these is injective, it follows that $a=a^{\prime}$ and $x=x^{\prime}$, which is equivalent to saying $(a, x)=\left(a^{\prime}, x^{\prime}\right)$.
To see that h is surjective, let $(b, y) \in B \times Y$. Then since f, g are surjective, there are $a \in A$ and $x \in X$ such that $f(a)=b$ and $g(x)=y$. It follows that $h(a, x)=(b, y)$.
31. Prove or disprove: Suppose $f: A \rightarrow B$ and $g: B \rightarrow C$ are functions. Then $g \circ f$ is bijective if and only if f is injective and g is surjective.
Solution: The direction (\Leftarrow) is false. Indeed, consider the case where $A=B$, and take f to be the identity function (this is obviously injective). Now take g to be any function that is surjective but not injective. Then $g \circ f=g$ is not injective, and so certainly not bijective.
The direction (\Rightarrow) is true. To see this, suppose $g \circ f$ is bijective. If $f(a)=f\left(a^{\prime}\right)$, then $(g \circ f)(a)=(g \circ f)\left(a^{\prime}\right)$ and so $a=a^{\prime}$ since $g \circ f$ is injective. To see surjectivity, let $c \in C$. Then since
$g \circ f$ is surjective, it follows that there is some $a \in A$ with $(g \circ f)(a)=c$. Now take $b=f(a)$, and so $g(b)=c$.
32. (X points) Let \mathbb{R}^{+}denote the set of positive real numbers and let A and B be denumerable subsets of \mathbb{R}^{+}. Define $C=\{x \in \mathbb{R}:-x / 2 \in B\}$. Show that $A \cup C$ is denumerable.
33. Prove that the interval $(0,1)$ is numerically equivalent to the interval $(0,+\infty)$.
34. Prove the following statement: A nonemty set S is countable if and only if there exists an injective function $g: S \rightarrow \mathbb{N}$.
35. Compute the greatest common divisor of 42 adn 13 and then express the greatest common divisor as a linear combination of 42 and 13.
Solution: $42=39+3=3(13)+3$;
$13=12+1=4(3)+1 ; 3=3(1)+0$. Therefore, the gcd is equal to 1 . Working backwards, we have that $1=13-4(3)=13-4(42-3(13)=13(13)+(-4) 42$.
36. Let $a, b, c \in \mathbb{Z}$. Prove that if c is a common divisor of a and b, then c divides any linear combination of a and b.
Solution: Suppose c is a common divisor of a and b and let $a x+b y$, where $x, y \in \mathbb{Z}$, be a linear combination of a and b. Then $c \mid a$ and $c \mid b$.
Therefore, $a=c m$ and $b=c n$ for some $m, n \in \mathbb{Z}$.
It follows that $a x+b y=c m x+c n y=c(m x+n y)$. Therefore, $c \mid(a x+b y)$.
37. Define the term " p is a prime". Then prove that if $a, p \in \mathbb{Z}, p$ is prime, and p does not divide a, then $\operatorname{gcd}(a, p)=1$.
Solution: A number p is prime if p is a positive integer greater than one and whenever $p=a b$ for some positive integers a and b, then $a=1$ or $b=1$.

Suppose that p is prime and that $a \in \mathbb{Z}$ is not divisible by p. Since p and a are not both zero, there is a greatest common divisor d. If $d>1$, then $d \mid p$ implies that $d=p$ since the only divisors of p are 1 and p. Since $d \mid a$, this implies that $p \mid a$ which is a contradiction. Therefore, d cannot be greater than 1 . Hence, $d=1$.
38. The greatest common divisor of three integers a, b, c is the largest positive integer which divides all three. We denote this greatest common divisor by $\operatorname{gcd}(a, b, c)$. Assume that a and b are not both zero. Prove the following equation:

$$
\operatorname{gcd}(a, b, c)=\operatorname{gcd}(\operatorname{gcd}(a, b), c)
$$

Solution: Let d be the gcd of a, b, and c. Let e be the gcd of a and b. Let f be the gcd of e and c. We prove that $d=f$. Since e is a linear combination of a and $b, d \mid e$. Since $d \mid c$, and f is a linear combination of e and c, it follows that d divides f. Therefore $d \leq f$.
On the other hand, $f \mid e$ and $f \mid c$. Since $e \mid a$ and $e|b, f| a$ and $f \mid b$. Thus, f is a common divisor of a, b, and c. Hence, $f \leq d$. Therefore, $f=d$.
39. By using the formal definition of the limit of the sequence, without assuming any propositions about limits, prove the following:

$$
\lim _{n \rightarrow \infty} \frac{3 n+1}{n-2}=3
$$

40. By using the formal definition of the limit of the sequence, without assuming any propositions about limits, prove that

$$
\lim _{n \rightarrow \infty} \frac{(-1)^{n} 3 n+1}{n-2}
$$

does not exist.
41. Let $\left(a_{n}\right)$ be a sequence with positive terms such that $\lim _{n \rightarrow \infty} a_{n}=1$. By using the formal definition of the limit of the sequence, prove the following:

$$
\lim _{n \rightarrow \infty} \frac{3 a_{n}+1}{2}=2
$$

42. (a) Use induction to prove

$$
\frac{1}{2 \cdot 4}+\frac{1}{4 \cdot 6}+\cdots+\frac{1}{2 n(2 n+2)}=\frac{n}{4(n+1)}
$$

for all $n \in \mathbb{N}$.
(b) Prove $\sum_{k=1}^{\infty} \frac{1}{2 k(2 k+2)}=\frac{1}{4}$.

