1. Describe the elements of the set $(\mathbb{Z} \times \mathbb{Q}) \cap \mathbb{R} \times \mathbb{N}$. Is this set countable or uncountable?
2. Let $A=\{\emptyset,\{\emptyset\}\}$. What is the cardinality of A ? Is $\emptyset \subset A$? Is $\emptyset \in A$? Is $\{\emptyset\} \subset A$? Is $\{\emptyset\} \in A$? Is $\{\emptyset,\{\emptyset\}\} \in A$?
3. List the elements of the set $A \times B$ where A is the set in the previous question and $B=\{1,2\}$.
4. Suppose that A, B, and C are sets. Which of the following statements is true for all sets A, B, and C ? For each, either prove the statement or give a counterexample: $(A \cap B) \cup C=A \cap(B \cup C)$, $A \cap B \subseteq A \cup B$, if $A \subset B$ then $A \times A \subset A \times B$, $\bar{A} \cap \bar{B} \cap \bar{C}=\overline{A \cup B \cup C}$.
5. State the negation of each of the following statements:

- There exists a natural number m such that $m^{3}-m$ is not divisible by 3 .
- $\sqrt{3}$ is a rational number.
- 1 is a negative integer.
- 57 is a prime number.

6. Verify the following laws:

- (a) Let P, Q and R are statements. Then,

$$
P \wedge(Q \vee R) \text { and }(P \wedge Q) \vee(P \wedge R) \text { are }
$$

- (b) Let P and Q are statements. Then,

$$
P \Rightarrow Q \text { and }(\sim Q) \Rightarrow(\sim P) \text { are logically }
$$ equivalent.

7. Write the open statement $P(x, y)$: "for all real x and y the value $(x-1)^{2}+(y-3)^{2}$ is positive" using quantifiers. Is the quantified statement true or false? Explain.
8. Prove that $3 x+7$ is odd if and only if x is even.
9. Prove that if a and b are positive numbers, the $\sqrt{a b} \leq \frac{a+b}{2}$. This is referred to as "Inequality between geometric and arithmetic mean."
10. Let A, B, and C be sets. Prove that $A \times(B \bigcap C)=(A \times B) \bigcap(A \times C)$.
11. Let A, B, and C be sets. Prove that $(A-B) \bigcap(A-C)=A-(B \bigcup C)$.
12. Suppose that x and y are real numbers. Prove that if $x+y$ is irrational, then x is irrational or y is irrational.
13. Let x be an irrational number. Prove that x^{4} or x^{5} is irrational.
14. Use a proof by contradiction to prove the following.

There exist no natural numbers m such that $m^{2}+m+3$ is divisible by 4 .
15. Let a, b be distinct primes. Then $\log _{a}(b)$ is irrational.
16. Prove or disprove the statement: there exists an integer n such that $n^{2}-3=2 n$.
17. Prove or disprove the statement: there exists a real number x such that $x^{4}+2=2 x^{2}$.
18. Prove that there exists a unique real number x such that $x^{3}+2=2 x$.
19. Disprove that statement: There exists integers a and b such that $a^{2}+b^{2} \equiv 3(\bmod 4)$
20. Use induction to prove that $6 \mid\left(n^{3}+5 n\right)$ for all $n \geq 0$.
21. Use induction to prove that

$$
1 \cdot 4+2 \cdot 7+\cdots+n(3 n+1)=n(n+1)^{2}
$$

for all $n \in \mathbb{N}$.
22. Use the Strong Principle of Mathematical Induction to prove that for each integer $n \geq 11$, there are nonnegative integers x and y such that $n=4 x+5 y$.
23. A sequence $\left\{a_{n}\right\}$ is defined recursively by $a_{0}=1$, $a_{1}=-2$ and for $n \geq 1$,

$$
a_{n+1}=5 a_{n}-6 a_{n-1}
$$

Prove that for $n \geq 0$,

$$
a_{n}=5 \times 2^{n}-4 \times 3^{n}
$$

24. Suppose R is an equivalence relation on a set A. Prove or disprove that R^{-1} is an equivalence relation on A.
25. Consider the set $A=\{a, b, c, d\}$, and suppose R is an equivalence relation on A. If R contains the elements (a, b) and (b, d), what other elements must it contain?
26. Let $A=\left\{a_{1}, a_{2}, a_{3}\right\}$ and $B=\left\{b_{1}, b_{2}\right\}$. Find a relation on $A \times B$ that is transitive and symmetric, but not reflexive.
27. Suppose A is a finite set and R is an equivalence relation on A.
(a) Prove that $|A| \leq|R|$.
(b) If $|A|=|R|$, what can you conclude about R ?
28. Consider the relation $R \subset \mathbb{Z}_{4} \times \mathbb{Z}_{6}$ defined by

$$
R=\{(x \bmod 4,3 x \bmod 6) \mid x \in \mathbb{Z}\}
$$

Prove that R is a function from \mathbb{Z}_{4} to \mathbb{Z}_{6}. Is R a bijective function?
29. Consider the relation $S \subset \mathbb{Z}_{4} \times \mathbb{Z}_{6}$ defined by

$$
S=\{(x \bmod 4,2 x \bmod 6) \mid x \in \mathbb{Z}\}
$$

Prove that S is not a function from \mathbb{Z}_{4} to \mathbb{Z}_{6}.
30. Suppose $f: A \rightarrow B$ and $g: X \rightarrow Y$ are bijective functions. Define a new function $h: A \times X \rightarrow B \times Y$ by $h(a, x)=(f(a), g(x))$. Prove that h is bijective.
31. Prove or disprove: Suppose $f: A \rightarrow B$ and $g: B \rightarrow C$ are functions. Then $g \circ f$ is bijective if and only if f is injective and g is surjective.
32. (X points) Let \mathbb{R}^{+}denote the set of positive real numbers and let A and B be denumerable subsets of \mathbb{R}^{+}. Define $C=\{x \in \mathbb{R}:-x / 2 \in B\}$. Show that $A \cup C$ is denumerable.
33. Prove that the interval $(0,1)$ is numerically equivalent to the interval $(0,+\infty)$.
34. Prove the following statement: A nonempty set S is countable if and only if there exists an injective function $g: S \rightarrow \mathbb{N}$.
35. Compute the greatest common divisor of 42 and 13 and then express the greatest common divisor as a linear combination of 42 and 13.
36. Let $a, b, c \in \mathbb{Z}$. Prove that if c is a common divisor of a and b, then c divides any linear combination of a and b.
37. Define the term " p is a prime". Then prove that if $a, p \in \mathbb{Z}, p$ is prime, and p does not divide a, then $\operatorname{gcd}(a, p)=1$.
38. The greatest common divisor of three integers a, b, c is the largest positive integer which divides all three. We denote this greatest common divisor by $\operatorname{gcd}(a, b, c)$. Assume that a and b are not both zero. Prove the following equation:

$$
\operatorname{gcd}(a, b, c)=\operatorname{gcd}(\operatorname{gcd}(a, b), c)
$$

39. By using the formal definition of the limit of the sequence, without assuming any propositions about limits, prove the following:

$$
\lim _{n \rightarrow \infty} \frac{3 n+1}{n-2}=3
$$

40. By using the formal definition of the limit of the sequence, without assuming any propositions about limits, prove that

$$
\lim _{n \rightarrow \infty} \frac{(-1)^{n} 3 n+1}{n-2}
$$

does not exist.
41. Let $\left(a_{n}\right)$ be a sequence with positive terms such that $\lim _{n \rightarrow \infty} a_{n}=1$. By using the formal definition of the limit of the sequence, prove the following:

$$
\lim _{n \rightarrow \infty} \frac{3 a_{n}+1}{2}=2
$$

42. (a) Use induction to prove

$$
\frac{1}{2 \cdot 4}+\frac{1}{4 \cdot 6}+\cdots+\frac{1}{2 n(2 n+2)}=\frac{n}{4(n+1)}
$$

for all $n \in \mathbb{N}$.
(b) Prove $\sum_{k=1}^{\infty} \frac{1}{2 k(2 k+2)}=\frac{1}{4}$.

