1. Let $n \in \mathbb{N}$ and $I=\{1,2, \ldots, n\}$. For $i \in I$, define $A_{i}=[(i-1) / n, i / n]$. Identify each of the following sets by writing it as an interval or a union of two intervals.
(a) $\bigcup_{i \in I} A_{i}$
(b) $\bigcap_{i \in I} \overline{A_{i}}$
2. Consider the set $S=\{\emptyset, \square\}$.
(a) List the elements of $\mathcal{P}(S)$.
(b) List the elements of $\mathcal{P}(\mathcal{P}(S))$.
(c) Find a partition of $\mathcal{P}(\mathcal{P}(S))$ into 3 sets.
(d) Is it possible to find a partition of S into 3 sets? Explain.
3. Prove the statements appearing in (a)-(b), and answer the prompt in (c)-(d). The symbol \equiv denotes congruence modulo n, where $n \in \mathbb{Z}$ such that $n \geq 2$.
(a) For all $a, b \in \mathbb{Z}$, if $a \equiv b$, then $b \equiv a$.
(b) For all sets $a, b, c \in \mathbb{Z}$, if $a \equiv b$ and $b \equiv c$, then $a \equiv c$.
(c) State the negation of each of the statements (a)-(b) above. Determine if the negation is true or false. Provide a counterexample for any false statement.
(d) Let $a, b, c \in \mathbb{Z}$, and consider the conditional statement

$$
\mathrm{P}: \text { If } a \equiv b \text { and } b \equiv c, \text { then } a \equiv c
$$

State the inverse, contrapositve and converse of statement P. Determine whether each of these is true or false.
4. Negate the following.
(a) $\forall n \in \mathbb{Z}, \quad \exists m \in \mathbb{Z}$ such that $m \cdot n=1$.
(b) $\exists x \in \mathbb{Q}$ such that $\forall y \in Q, \quad x \cdot y=y$.

Rewrite the statements in (a) and (b) without the use of the symbols \forall, \exists, and state whether each is a true or a false statement. If it is a true statement, prove it. If it is a false statement, provide a counterexample.
5. Construct a truth table to show that the contrapositive of $A \Rightarrow B$ is equivalent to $A \Rightarrow B$.
6. Prove the following statement.

$$
\forall a \in \mathbb{R} \exists!x \in \mathbb{R}, \text { such that } 3 x-1=a
$$

7. Let E denote the set of even integers, $x \in \mathbb{Z}$, and $A(x)$ be the following open sentence.

$$
A(x): " x \in E \Rightarrow \exists k \in \mathbb{Z} \text { such that } x=2 k "
$$

(a) Write the inverse of $A(x)$.
(b) Write the converse of $A(x)$.
(c) Write the contrapositive of $A(x)$.
(d) Is $A(x)$ true for all $x \in \mathbb{Z}$? What about its converse? In this case, how would you restate it using necessary/ sufficient/ necessary and sufficient?
8. Let $A=\{x \in \mathbb{Z} \mid x=6 k, k \in \mathbb{Z}\}$, $B=\{x \in \mathbb{Z} \mid x=2 k, k \in \mathbb{Z}\}$, $C=\{x \in \mathbb{Z} \mid x=3 k, k \in \mathbb{Z}\}$. Prove the following statement.

$$
x \in A \Longleftrightarrow(\exists y \in B \text { and } \exists z \in C \text { such that } x=y z)
$$

9. Construct a truth table to show that $A \Rightarrow B$ is equivalent to the statement: $\operatorname{not}(A)$ or B.
10. Let $a, b, c \in \mathbb{R}$, and consider the following open sentence:
$P(a, b, c):$ A necessary condition for the equation
$a x^{2}+b x+c=0$ to have a solution is: $a \neq 0$ and $b^{2}-4 a c \geq 0$.
(a) Rephrase $P(a, b, c)$ as an if-then implication; explicitly write all relevant quantifiers.
(b) Write the contrapositive.
(c) Write the converse.
(d) Write the inverse.
(e) Write the negation of $P(a, b, c)$ (simplified by moving the not as far into the statement as possible).
(f) Which of the above statements (a)-(d) are equivalent to each other (for all $a, b, c \in \mathbb{R}$)?
(g) The statement ' $\forall a, b, c \in \mathbb{R}, P(a, b, c)$ ' is false. Disprove it (prove the negation).
11. Let $x, y \in \mathbb{R}$. Prove that $(x+y)^{2}=x^{2}+y^{2}$ if and only if $x y=0$.
12. Let $n \in \mathbb{Z}$. Prove that n is odd if and only if $n+7$ is even.
13. Let $n \in \mathbb{Z}$. Prove that n is odd if and only if n^{2} is odd.
14. Let $a \in(0, \infty)$. Prove that a rectangle with perimeter $4 a$ is a square if and only if its area is a^{2}.
15. Define the Euclidean norm of
$\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$ by $\|\mathbf{x}\|=\sqrt{x_{1}^{2}+\ldots+x_{n}^{2}}$. Prove that $\|\mathbf{x}\|=0$ if and only if $\left(x_{1}, x_{2}, \ldots, x_{n}\right)=(0,0, \ldots, 0)$.
16. Let $x \in \mathbb{Z}$.
(a) Prove that $x^{2}+x$ is even.
(b) Assume $x \neq 0$. Prove that $\left(x^{2}+x\right) / 2$ is divisible by x if and only if x is odd.
(c) Assume $x+1 \neq 0$. Prove that $\left(x^{2}+x\right) / 2$ is divisible by $x+1$ if and only if x is even.
17. Show that if $x^{2}-3 x+2<0$, then $1<x<2$.
18. Let $a, b, c, d \in \mathbb{Z}$ with a and b nonzero. Prove that if $a b \nmid c d$, then $a \nmid c$ or $b \nmid d$.
19. Prove that if a positive integer is divisible by 3 then the sum if its digits is divisible by 3 .
20. Prove that for any two sets A and B, $\overline{(A \cup B)}=\bar{A} \cap \bar{B}$.
21. Prove that for any two sets A and B, $(A \cup B)-(A \cap B)=(A-B) \cup(B-A)$.
22. Prove that for any sets A, B and C, $A \times(B \cup C)=(A \times B) \cup(A \times C)$.
23. Prove that if $n \mid a$ then $n|a+b \Leftrightarrow n| b$
