- 1. Let $n \in \mathbb{N}$ and $I = \{1, 2, ..., n\}$. For $i \in I$, define $A_i = [(i-1)/n, i/n]$. Identify each of the following sets by writing it as an interval or a union of two intervals.
 - (a) $\bigcup_{i \in I} A_i$
 - (b) $\bigcap_{i \in I} \overline{A_i}$
- 2. Consider the set $S = \{\emptyset, \Box\}$.
 - (a) List the elements of $\mathcal{P}(S)$.
 - (b) List the elements of $\mathcal{P}(\mathcal{P}(S))$.
 - (c) Find a partition of $\mathcal{P}(\mathcal{P}(S))$ into 3 sets.
 - (d) Is it possible to find a partition of S into 3 sets? Explain.
- 3. Prove the statements appearing in (a)-(b), and answer the prompt in (c)-(d). The symbol \equiv denotes *congruence* modulo *n*, where $n \in \mathbb{Z}$ such that $n \geq 2$.
 - (a) For all $a, b \in \mathbb{Z}$, if $a \equiv b$, then $b \equiv a$.
 - (b) For all sets $a, b, c \in \mathbb{Z}$, if $a \equiv b$ and $b \equiv c$, then $a \equiv c$.
 - (c) State the negation of each of the statements(a)-(b) above. Determine if the negation is true or false. Provide a counterexample for any false statement.
 - (d) Let $a, b, c \in \mathbb{Z}$, and consider the conditional statement

P: If $a \equiv b$ and $b \equiv c$, then $a \equiv c$.

State the inverse, contrapositve and converse of statement P. Determine whether each of these is true or false.

- 4. Negate the following.
 - (a) $\forall n \in \mathbb{Z}$, $\exists m \in \mathbb{Z}$ such that $m \cdot n = 1$.
 - (b) $\exists x \in \mathbb{Q}$ such that $\forall y \in Q$, $x \cdot y = y$.

Rewrite the statements in (a) and (b) without the use of the symbols \forall, \exists , and state whether each is a true or a false statement. If it is a true statement, prove it. If it is a false statement, provide a counterexample.

- 5. Construct a truth table to show that the contrapositive of $A \Rightarrow B$ is equivalent to $A \Rightarrow B$.
- 6. Prove the following statement.

```
\forall a \in \mathbb{R} \exists ! x \in \mathbb{R}, such that 3x - 1 = a.
```

7. Let *E* denote the set of even integers, $x \in \mathbb{Z}$, and A(x) be the following open sentence.

A(x): " $x \in E \Rightarrow \exists k \in \mathbb{Z}$ such that x = 2k"

- (a) Write the inverse of A(x).
- (b) Write the converse of A(x).
- (c) Write the contrapositive of A(x).
- (d) Is A(x) true for all $x \in \mathbb{Z}$? What about its converse? In this case, how would you restate it using *necessary/ sufficient/ necessary and sufficient*?
- 8. Let $A = \{x \in \mathbb{Z} | x = 6k, k \in \mathbb{Z}\},\ B = \{x \in \mathbb{Z} | x = 2k, k \in \mathbb{Z}\},\ C = \{x \in \mathbb{Z} | x = 3k, k \in \mathbb{Z}\}.$ Prove the following statement.

 $x \in A \iff (\exists y \in B \text{ and } \exists z \in C \text{ such that } x = yz)$

- 9. Construct a truth table to show that $A \Rightarrow B$ is equivalent to the statement: not(A) or B.
- 10. Let $a, b, c \in \mathbb{R}$, and consider the following open sentence:
- $$\begin{split} P(a,b,c): \mbox{ A necessary condition for the equation} \\ ax^2+bx+c=0 \mbox{ to have a solution is: } a\neq 0 \\ \mbox{ and } b^2-4ac\geq 0. \end{split}$$
 - (a) Rephrase P(a, b, c) as an if-then implication; explicitly write all relevant quantifiers.
 - (b) Write the contrapositive.
 - (c) Write the converse.
 - (d) Write the inverse.
 - (e) Write the negation of P(a, b, c) (simplified by moving the *not* as far into the statement as possible).
 - (f) Which of the above statements (a)-(d) are equivalent to each other (for all $a, b, c \in \mathbb{R}$)?
 - (g) The statement $\forall a, b, c \in \mathbb{R}$, P(a, b, c)' is false. Disprove it (prove the negation).
 - 11. Let $x, y \in \mathbb{R}$. Prove that $(x + y)^2 = x^2 + y^2$ if and only if xy = 0.
 - 12. Let $n \in \mathbb{Z}$. Prove that n is odd if and only if n + 7 is even.
 - 13. Let $n \in \mathbb{Z}$. Prove that n is odd if and only if n^2 is odd.
 - 14. Let $a \in (0, \infty)$. Prove that a rectangle with perimeter 4a is a square if and only if its area is a^2 .

- 15. Define the Euclidean norm of $\mathbf{x} = (x_1, x_2, ..., x_n) \in \mathbb{R}^n$ by $||\mathbf{x}|| = \sqrt{x_1^2 + ... + x_n^2}$. Prove that $||\mathbf{x}|| = 0$ if and only if $(x_1, x_2, ..., x_n) = (0, 0, ..., 0)$.
- 16. Let $x \in \mathbb{Z}$.
 - (a) Prove that $x^2 + x$ is even.
 - (b) Assume $x \neq 0$. Prove that $(x^2 + x)/2$ is divisible by x if and only if x is odd.
 - (c) Assume $x + 1 \neq 0$. Prove that $(x^2 + x)/2$ is divisible by x + 1 if and only if x is even.
- 17. Show that if $x^2 3x + 2 < 0$, then 1 < x < 2.

- 18. Let $a, b, c, d \in \mathbb{Z}$ with a and b nonzero. Prove that if $ab \nmid cd$, then $a \nmid c$ or $b \nmid d$.
- 19. Prove that if a positive integer is divisible by 3 then the sum if its digits is divisible by 3.
- 20. Prove that for any two sets A and B, $\overline{(A \cup B)} = \overline{A} \cap \overline{B}.$
- 21. Prove that for any two sets A and B, $(A \cup B) - (A \cap B) = (A - B) \cup (B - A).$
- 22. Prove that for any sets A, B and C, $A \times (B \cup C) = (A \times B) \cup (A \times C).$
- 23. Prove that if n|a then $n|a + b \Leftrightarrow n|b$