Partitions of Sets

- 1. If the intersection of two sets is the empty set, then the two sets are disjoint.
- Let S be a collection of subsets of a set A.
 If every two distinct sets in S are disjoint, then the collection S of subsets of a set A is called pairwise disjoint.
- 3. Let A be a nonempty set. A **partition** of a set A is defined as a collection S of subsets of A satisfying the three properties
 - (1) X is not an empty set for every set $X \in S$.
 - (2) For every two sets $X, Y \in S$, either X = Y or $X \cap Y = \{\}$. In other words, S is a collection of pairwise disjoint subsets of A.

(3)
$$\bigcup_{X \in S} X = A$$

Example Let $A = \{x \in \mathbb{N} | 1 \le x \le 10\}$. Let $A_1 = \{1, 4, 10\}, A_2 = \{5, 7, 8\}, A_3 = \{2, 3, 6, 9\}$ and let $S = \{A_1, A_2, A_3\}$.

A collection $S = \{A_1, A_2, A_3\}$, whose elements are subsets of A, satisfies the above three properties in the definition of "the partitions of sets":

- (1) For every element in S, that is, A_1 , A_2 , and A_3 are not empty sets.
- (2) For every two sets in S,

Pariwise disjoint : $A_1 \cap A_2 = \emptyset$, $A_2 \cap A_3 = \emptyset$, $A_3 \cap A_1 = \emptyset$.

That is, every two sets in S are disjoint.

(3) $\bigcup_{i=1}^{3} A_i = A_1 \bigcup A_2 \bigcup A_3 = \{1, 4, 10, 5, 7, 8, 2, 3, 6, 9\}.$

Since the order in a set doesn't matter, $\{1, 4, 10, 5, 7, 8, 2, 3, 6, 9\} = A$.

Therefore, S is a partition of \mathbf{A} .

Here are self-practice problems. The following questions are a continuation of the previous example.

1. Draw a proper Venn Diagram of a partition of the set A.

- 2. Which of following are true statements?
 - a. $\emptyset \in S$ b. $\emptyset \subset S$ c. $A_1 \subset S$ d. $A_3 \in S$ e. $A_2 \in A$ f. $A_1 \subset A$ g. $S \subset \mathcal{P}(A)$ h. $A \subseteq S$.

 - i. $\mathcal{P}(A) \{\emptyset\}$ is a partition of the set A.