Examples

A. Given the set $S=\{\{1,2\}, 3,4\}$.
(a) List the elements of S.
$\{1,2\}$,
3 ,
4
(b) Which of the following are true statements?
(i) $2 \in S$

No, it is not true because 2 is not an element of the set S. So $2 \notin S$.
(ii) $\{1,2\} \in S$

Yes, it is true.
(iii) $\{1,2\} \subseteq S$

No, here $\{1,2\}$ is an element of the set S .
We can write $\{\{1,2\}\} \subset S$ and the set $\{\{1,2\}\}$ has one element.
(iv) $\{3,4\} \subseteq S$

Yes, it is true.
B. Find the corresponding power sets of the set $M=\{0,1\}$ and of the set $K=\{a, b, c\}$.
$\mathcal{P}(M)=\{\emptyset,\{0\},\{1\},\{0,1\}\}$.
$\mathcal{P}(K)=\{\emptyset,\{a\},\{b\},\{c\},\{a, b\},\{b, c\},\{a, c\},\{a, b, c\}\}$.

A power set is again a SET! If you answer it as follows

$$
\mathcal{P}(M)=\emptyset,\{0\},\{1\},\{0,1\}
$$

it is not correct because the left hand side is a set and the right hand side is not a set.
C. What is the cardinality of $\mathcal{P}(M)$? How about $|\mathcal{P}(K)|$?

The cardinality of $\mathcal{P}(M)$ is 4 and you can also write $|\mathcal{P}(M)|=4$ $|\mathcal{P}(K)|=8$.
D. Can you make a conjecture how A and $|\mathcal{P}(A)|$ are related if A is a finite set?

Note that the set M has two elements and the cardinality of its power set is 4. Also, the set P has three elements and $|\mathcal{P}(K)|=8$. We can think that $4=2^{2}$ and $8=2^{3}$. The conjecture would be if a set A has n elements then $|\mathcal{P}(A)|=2^{n}$. Why? When we make a subset of a set A, we have two choices for each element in a set A. Either include an element or exclude an element. So, we have $2 \times 2 \times \cdots \times 2=2^{n}$.

