Examples

- A. Given the set $S = \{\{1, 2\}, 3, 4\}$.
 - (a) List the elements of S.
 - $\{1, 2\},\ 3,\ 4$
 - (b) Which of the following are true statements?
 - (i) $2 \in S$ No, it is not true because 2 is not an element of the set S. So $2 \notin S$.
 - (ii) $\{1,2\} \in S$ Yes, it is true.
 - (iii) $\{1,2\} \subseteq S$ No, here $\{1,2\}$ is an element of the set S. We can write $\{\{1,2\}\} \subset S$ and the set $\{\{1,2\}\}$ has one element.
 - (iv) $\{3,4\} \subseteq S$ Yes, it is true.

B. Find the corresponding power sets of the set $M = \{0, 1\}$ and of the set $K = \{a, b, c\}$.

$$\begin{split} \mathcal{P}(M) &= \{ \emptyset, \{0\}, \{1\}, \{0, 1\} \}. \\ \mathcal{P}(K) &= \{ \emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{a, c\}, \{a, b, c\} \}. \end{split}$$

A power set is again a **SET**! If you answer it as follows

$$\mathcal{P}(M) = \emptyset, \{0\}, \{1\}, \{0, 1\}$$

it is not correct because the left hand side is a set and the right hand side is not a set.

C. What is the cardinality of $\mathcal{P}(M)$? How about $|\mathcal{P}(K)|$?

The cardinality of $\mathcal{P}(M)$ is 4 and you can also write $|\mathcal{P}(M)| = 4$ $|\mathcal{P}(K)| = 8.$

D. Can you make a conjecture how A and $|\mathcal{P}(A)|$ are related if A is a finite set?

Note that the set M has two elements and the cardinality of its power set is 4. Also, the set P has three elements and $|\mathcal{P}(K)| = 8$. We can think that $4 = 2^2$ and $8 = 2^3$. The conjecture would be if a set A has n elements then $|\mathcal{P}(A)| = 2^n$. Why? When we make a subset of a set A, we have two choices for each element in a set A. Either include an element or exclude an element. So, we have $2 \times 2 \times \cdots \times 2 = 2^n$.