Section 9.6

9.54 The functions $f: \mathbb{R} \rightarrow \mathbb{R}$ and $g: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=2 x+3$ and $g(x)=-3 x+5$.
(a) Show that f is one-to-one and onto.
(b) Show that g is one-to-one and onto.
(c) Determine the composition function $g \circ f$.
(d) Determine the inverse functions f^{-1} and g^{-1}.
(e) Determine the inverse function of $(g \circ f)^{-1}$ of $g \circ f$ and the composition $f^{-1} \circ g^{-1}$.
9.57 The function $f: \mathbb{R} \rightarrow \mathbb{R}$ is defined by

$$
f(x)=\left\{\begin{array}{ccc}
\frac{1}{x-1} & \text { if } & x<1 \\
\sqrt{x-1} & \text { if } & x \geq 1
\end{array}\right.
$$

(a) Show that f is a bijection.
(b) Determine the inverse function f^{-1} of f.
9.81 The function $h: \mathbb{Z}_{16} \rightarrow \mathbb{Z}_{24}$ is defined by $h([a])=[3 a]$ for $a \in \mathbb{Z}$.
(a) Prove that the function h is well defined; that is, prove that if $[a]=[b]$ in \mathbb{Z}_{16}, then $h([a])=h([b])$ in \mathbb{Z}_{24}.
(b) For the subsets $A=\{[0],[3],[6],[9],[12],[15]\}$ and $B=\{[0],[8]\}$ of \mathbb{Z}_{16}, determine the subsets $h(A)$ and $h(B)$ of \mathbb{Z}_{24}.
(c) For the subsets $C=\{[0],[6],[16],[18]\}$ and $D=\{[4],[8],[16]\}$ of \mathbb{Z}_{24}, determine the subsets $h^{-1}(C)$ and $h^{-1}(D)$.

