Section 9.6

9.54 The functions $f : \mathbb{R} \to \mathbb{R}$ and $g : \mathbb{R} \to \mathbb{R}$ defined by f(x) = 2x + 3 and g(x) = -3x + 5.

- (a) Show that f is one-to-one and onto.
- (b) Show that g is one-to-one and onto.
- (c) Determine the composition function $g \circ f$.
- (d) Determine the inverse functions f^{-1} and g^{-1} .
- (e) Determine the inverse function of $(g \circ f)^{-1}$ of $g \circ f$ and the composition $f^{-1} \circ g^{-1}$.
- **9.57** The function $f : \mathbb{R} \to \mathbb{R}$ is defined by

$$f(x) = \begin{cases} \frac{1}{x-1} & \text{if } x < 1\\ \sqrt{x-1} & \text{if } x \ge 1 \end{cases}$$

- (a) Show that f is a bijection.
- (b) Determine the inverse function f^{-1} of f.
- **9.81** The function $h : \mathbb{Z}_{16} \to \mathbb{Z}_{24}$ is defined by h([a]) = [3a] for $a \in \mathbb{Z}$.
 - (a) Prove that the function h is well defined; that is, prove that if [a] = [b] in \mathbb{Z}_{16} , then h([a]) = h([b]) in \mathbb{Z}_{24} .
 - (b) For the subsets $A = \{[0], [3], [6], [9], [12], [15]\}$ and $B = \{[0], [8]\}$ of \mathbb{Z}_{16} , determine the subsets h(A) and h(B) of \mathbb{Z}_{24} .
 - (c) For the subsets $C = \{[0], [6], [16], [18]\}$ and $D = \{[4], [8], [16]\}$ of \mathbb{Z}_{24} , determine the subsets $h^{-1}(C)$ and $h^{-1}(D)$.