Section 9.5

9.42 Prove or disprove the following.
(a) If two functions $f: A \rightarrow B$ and $g: B \rightarrow C$ are both bijective, then $g \circ f: A \rightarrow C$ is bijective.
(c) Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be two functions. If g is one-to-one, then $g \circ f: A \rightarrow C$ is one-to-one.
9.44 Let A denote the set of integers that are multiples of 4 , let B denote the set of integers that are multiples of 8 and let B^{\prime} denote the set of even integers. Thus $A=\{4 k: k \in \mathbb{Z}\}, B=\{8 k: k \in \mathbb{Z}\}$ and $B^{\prime}=\{2 k: k \in \mathbb{Z}\}$. Let $f: A \times A \rightarrow B$ and $g: B^{\prime} \rightarrow \mathbb{Z}$ be functions defined by $f((x, y))=x y$ for $x, y \in A$ and $g(n)=n / 2$ for $b \in B^{\prime}$.
(a) Show that the composition function $g \circ f: A \times A \rightarrow \mathbb{Z}$ is defined.
(b) Let For $k, l \in \mathbb{Z}$, determine $(g \circ f)((4 k, 4 l))$.
9.46 Let A be the set of odd integers and B the set of even integers. A function $f: A \times B \rightarrow$ $A \times A$ is defined by $f(a, b)=(3 a-b, a+b)$ and a function $g: A \times A \rightarrow B \times A$ is defined by $g(c, d)=(c-d, 2 c+d)$.
(a) Determine $(g \circ f)(3,8)$
(b) Determine whether the function $g \circ f: A \times B \rightarrow B \times A$ is one-to-one.
(b) Determine whether $g \circ f$ is onto.

Problem 4 Complete the example about cities, states and capitals on page 2 of the lecture notes.

