Section 9.4

9.31 Let $f : \mathbb{Z}_5 \to \mathbb{Z}_5$ be a function defined by f([a]) = [2a+3].

- (a) Show that f is well-defined.
- (b) Determine whether f is bijective.

9.32 Prove that the function $f : \mathbb{R} - \{2\} \to \mathbb{R} - \{5\}$ defined by $f(x) = \frac{5x+1}{x-2}$ is bijective.

9.34 Give a proof of Theorem 9.7 using mathematical induction.

Theorem 9.7 If A and B are finite sets with |A| = |B| = n, then there are n! bijective functions from A to B.

- **9.36** (Bonus) Let $A = \{a, b, c, d, e, f\}$ and $B = \{u, v, w, x, y, z\}$. With each element $r \in A$, there is associated a lost or subset $L(r) \subseteq B$. The goal is to define a "list function" $\phi : A \to B$ with the property that $\phi(r) \in L(r)$ for each $r \in A$.
 - (a) $L(a) = \{w, x, y\}, L(b) = \{u, z\}, L(c) = \{u, v\}, L(d) = \{u, w\}, L(e) = \{u, x, y\}, L(f) = \{v, y\}, \text{ does there exist a bijective list function } \phi : A \to B \text{ for these lists?}$
 - (b) $L(a) = \{u, v, x, y\}, L(b) = \{v, w, y\}, L(c) = \{v, y\}, L(d) = \{u, w, x, z\}, L(e) = \{v, w\}, L(f) = \{w, y\}, \text{ does there exist a bijective list function } \phi : A \to B \text{ for these lists?}$