Section 9.4

9.31 Let $f: \mathbb{Z}_{5} \rightarrow \mathbb{Z}_{5}$ be a function defined by $f([a])=[2 a+3]$.
(a) Show that f is well-defined.
(b) Determine whether f is bijective.
9.32 Prove that the function $f: \mathbb{R}-\{2\} \rightarrow \mathbb{R}-\{5\}$ defined by $f(x)=\frac{5 x+1}{x-2}$ is bijective.
9.34 Give a proof of Theorem 9.7 using mathematical induction.

Theorem 9.7 If A and B are finite sets with $|A|=|B|=n$, then there are n ! bijective functions from A to B.
9.36 (Bonus) Let $A=\{a, b, c, d, e, f\}$ and $B=\{u, v, w, x, y, z\}$. With each element $r \in A$, there is associated a lost or subset $L(r) \subseteq B$. The goal is to define a "list function" $\phi: A \rightarrow B$ with the property that $\phi(r) \in L(r)$ for each $r \in A$.
(a) $L(a)=\{w, x, y\}, L(b)=\{u, z\}, L(c)=\{u, v\}, L(d)=\{u, w\}, L(e)=\{u, x, y\}$, $L(f)=\{v, y\}$, does there exist a bijective list function $\phi: A \rightarrow B$ for these lists?
(b) $L(a)=\{u, v, x, y\}, L(b)=\{v, w, y\}, L(c)=\{v, y\}, L(d)=\{u, w, x, z\}, L(e)=$ $\{v, w\}, L(f)=\{w, y\}$, does there exist a bijective list function $\phi: A \rightarrow B$ for these lists?

