Section 9.3

9.20 A function $f: \mathbb{Z} \rightarrow \mathbb{Z}$ is defined by $f(n)=2 n+1$. Determine whether f is (a) injective, (b) surjective.
9.63 Let function $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function defined by $f(x)=x^{2}+3 x+4$.
(a) Show that f is not injective.
(b) Find all pairs of real numbers such that $f\left(r_{1}\right)=f\left(r_{2}\right)$.
(c) Show that f is not surjective.
(d) Find the set S of all real numbers such that if $s \in S$, then there is no real number x such that $f(x)=s$.
(e) What well-known set is the set S in (d) related to?
9.67 For each of the following functions, determine, with explanation, whether the function is one-to-one and whether it is onto.
(c) $h: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z} \times \mathbb{Z}$, where $h(r, s)=(2 r+1,4 s+3)$
(d) $\phi: \mathbb{Z} \times \mathbb{Z} \rightarrow S=\{a+b \sqrt{2}: a, b \in \mathbb{Z}\}$, where $\phi(a, b)=a+b \sqrt{2}$
9.68 (Bonus) Let S be a nonempty set. Show that there exists an injective function from $\mathcal{P}(S)$ to $\mathcal{P}(\mathcal{P}(S))$.
9.78 (Bonus) A function $F: \mathbb{N} \rightarrow \mathbb{N} \cup\{0\}$ is defined by $F(n)=m$ for each $n \in \mathbb{N}$, where m is that nonnegative integer for which $3 n+1=2^{m} k$ and k is an odd integer. Prove or disprove the following:
(a) F is one-to-one.
(b) F is onto.

