Section 9.1

- **9.4** For the given subset A_i of \mathbb{R} and the relation R_i $(1 \le i \le 3)$ from A_i to \mathbb{R} , determine whether R_i is a function from A_i to \mathbb{R} .
 - (a) $A_1 = \mathbb{R}, R_1 = \{(x, y) : x \in A_1, y = 4x 3\}$
 - (b) $A_2 = [0, \infty), R_2 = \{(x, y) : x \in A_2, (y+2)^2 = x\}$
 - (a) $A_3 = \mathbb{R}, R_3 = \{(x, y) : x \in A_3, (x + y)^2 = 4\}$
- **9.8** Let $A = \{5, 6\}$, $B = \{5, 7, 8\}$ and $S = \{n : n \ge 3 \text{ is an odd integer}\}$. A relation from $A \times B$ to S is defined as (a, b)Rs if $s \mid (a + b)$. Is R a function from $A \times B$ to S?
- **9.10** A function $g: \mathbb{Q} \to \mathbb{Q}$ is defined by $g(r) = 4r + 1, \forall r \in \mathbb{Q}$.
 - (a) Determine $g(\mathbb{Z})$ and g(E), where E is the set of even integers.
 - (b) Determine $g^{-1}(\mathbb{N})$ and $g^{-1}(D)$, where D is the set of odd integers.
- **9.12** For a function $f : A \to B$ and subsets C and D of A and E and F of B, prove the following.
 - (a) $f(C \cup D) = f(C) \cup f(D)$
 - (b) $f(C \cap D) \subseteq f(C) \cap f(D)$
 - (d) $f^{-1}(E \cup F) = f^{-1}(E) \cup f^{-1}(F)$