Section 9.1

9.4 For the given subset A_{i} of \mathbb{R} and the relation $R_{i}(1 \leq i \leq 3)$ from A_{i} to \mathbb{R}, determine whether R_{i} is a function from A_{i} to \mathbb{R}.
(a) $A_{1}=\mathbb{R}, R_{1}=\left\{(x, y): x \in A_{1}, y=4 x-3\right\}$
(b) $A_{2}=[0, \infty), R_{2}=\left\{(x, y): x \in A_{2},(y+2)^{2}=x\right\}$
(a) $A_{3}=\mathbb{R}, R_{3}=\left\{(x, y): x \in A_{3},(x+y)^{2}=4\right\}$
9.8 Let $A=\{5,6\}, B=\{5,7,8\}$ and $S=\{n: n \geq 3$ is an odd integer $\}$. A relation from $A \times B$ to S is defined as $(a, b) R s$ if $s \mid(a+b)$. Is R a function from $A \times B$ to S ?
9.10 A function $g: \mathbb{Q} \rightarrow \mathbb{Q}$ is defined by $g(r)=4 r+1, \forall r \in \mathbb{Q}$.
(a) Determine $g(\mathbb{Z})$ and $g(E)$, where E is the set of even integers.
(b) Determine $g^{-1}(\mathbb{N})$ and $g^{-1}(D)$, where D is the set of odd integers.
9.12 For a function $f: A \rightarrow B$ and subsets C and D of A and E and F of B, prove the following.
(a) $f(C \cup D)=f(C) \cup f(D)$
(b) $f(C \cap D) \subseteq f(C) \cap f(D)$
(d) $f^{-1}(E \cup F)=f^{-1}(E) \cup f^{-1}(F)$

