Section 8.3

- **8.28** (a) Let R be a relation defined on \mathbb{Z} by a R b if a + b is even. Show that R is an equivalence relation and determine the distinct equivalence classes.
 - (b) Suppose that "even" is replaced by "odd" in (a). Which of the properties reflexive, symmetric and transitive does R possess?
- **8.30** Let $H = \{2^m : m \in \mathbb{Z}\}$. A relation R is defined on the set \mathbb{Q}^+ of positive rational numbers by a R b if $a/b \in H$.
 - (a) Show that R is an equivalence relation.
 - (b) Describe the elements in the equivalence class [3].

Section 8.4

8.38 Let R be a relation defined on the set \mathbb{N} by a R b if $a \mid 2b$ or $b \mid 2a$. Prove or disprove: R is an equivalence relation.

Section 8.5

8.52 Let R be defined on \mathbb{Z} by a R b if $a^2 \equiv b^2 \pmod{5}$. Prove that R is an equivalence relation and determine the distinct equivalence classes.

Section 8.6

- **8.54** Construct the addition and multiplication tables for \mathbb{Z}_5 .
- **8.56** In \mathbb{Z}_{11} , express the following sums and products as [r], where $0 \le r < 11$.
 - (a) [7] + [5]
 - (b) $[7] \cdot [5]$
 - (c) [-82] + [207]
 - (d) $[-82] \cdot [207]$
- **8.58** Prove that the multiplication in \mathbb{Z}_n , $n \ge 2$, defined by [a][b] = [ab] is well defined. (See result 4.11.)