Section 8.1

8.4 Let $A=\{a, b, c\}$ and $B=\{1,2,3,4\}$. Then $R_{1}=\{(a, 2),(a, 3),(b, 1),(b, 3),(c, 4)\}$ is a relation from A to B while $R_{2}=\{(1, b),(1, c),(2, a),(2, b),(3, c),(4, a),(4, c)\}$ is a relation from B to A. A relation R is defined on A by $x R y$ if there exists $z \in B$ such that $x R_{1} z$ and $z R_{2} y$. Express R by listing its elements.
8.6 A relation R is defined on \mathbb{N} by $a R b$ if $a / b \in \mathbb{N}$. For $c, d \in \mathbb{N}$, under what conditions is $c R^{-1} d$?
8.10 Let A be a set with $|A|=4$. What is the maximum number of elements that a relation R on A can contain so that $R \bigcap R^{-1}=\emptyset$?

Section 8.2

8.12 Let $S=\{a, b, c\}$. Then $R=\{(a, a),(a, b),(a, c)\}$ is a relation on S. Which of the properties reflexive, symmetric and transitive does the relation R possess? Justify your answer.
8.14 Let $A=\{a, b, c, d\}$. Give an example (with justification) of a relation R on A that has none of the following properties: reflexive, symmetric, transitive.
8.16 Let $A=\{a, b, c, d\}$. How many relations defined on A are reflexive, symmetric and transitive and contain the ordered pairs $(a, b),(b, c),(c, d) ?$
8.22 Let S be the set of all polynomials of degree at most 3. An element $s(x)$ of S can be expressed as $s(x)=a x^{3}+b x^{2}+c x+d$, where $a, b, c, d \in \mathbb{R}$. A relation R is defined on S by $p(x) R q(x)$ if $p(x)$ and $q(x)$ have a real root in common. (For example $p(x)=(x-1)^{2}$ and $q(x)=x^{2}-1$ have the root 1 in common so that $p(x) R q(x)$.) Determine which of the properties reflexive, symmetric and transitive are possessed by R.

Section 8.3

8.24 Let R be an equivalence relation on $A=\{a, b, c, d, e, f, g\}$ such that $a R c, c R d$, $d R g$ and $b R f$. If there are three distinct equivalence classes resulting from R, then determine these equivalence classes and determine all elements of R.

