Section 8.1

8.4 Let \(A = \{a, b, c\} \) and \(B = \{1, 2, 3, 4\} \). Then \(R_1 = \{(a, 2), (a, 3), (b, 1), (b, 3), (c, 4)\} \) is a relation from \(A \) to \(B \) while \(R_2 = \{(1, b), (1, c), (2, a), (2, b), (3, c), (4, a), (4, c)\} \) is a relation from \(B \) to \(A \). A relation \(R \) is defined on \(A \) by \(x R y \) if there exists \(z \in B \) such that \(x R_1 z \) and \(z R_2 y \). Express \(R \) by listing its elements.

8.6 A relation \(R \) is defined on \(\mathbb{N} \) by \(a R b \) if \(a/b \in \mathbb{N} \). For \(c, d \in \mathbb{N} \), under what conditions is \(c R^{-1} d \)?

8.10 Let \(A \) be a set with \(|A| = 4\). What is the maximum number of elements that a relation \(R \) on \(A \) can contain so that \(R \cap R^{-1} = \emptyset \)?

Section 8.2

8.12 Let \(S = \{a, b, c\} \). Then \(R = \{(a, a), (a, b), (a, c)\} \) is a relation on \(S \). Which of the properties reflexive, symmetric and transitive does the relation \(R \) possess? Justify your answer.

8.14 Let \(A = \{a, b, c, d\} \). Give an example (with justification) of a relation \(R \) on \(A \) that has no reflexive properties.

8.16 Let \(A = \{a, b, c, d\} \). How many relations defined on \(A \) are reflexive, symmetric and transitive and contain the ordered pairs \((a, b), (b, c), (c, d)\)?

8.22 Let \(S \) be the set of all polynomials of degree at most 3. An element \(s(x) \) of \(S \) can be expressed as \(s(x) = ax^3 + bx^2 + cx + d \), where \(a, b, c, d \in \mathbb{R} \). A relation \(R \) is defined on \(S \) by \(p(x) R q(x) \) if \(p(x) \) and \(q(x) \) have a real root in common. (For example \(p(x) = (x - 1)^2 \) and \(q(x) = x^2 - 1 \) have the root 1 in common so that \(p(x) R q(x) \).) Determine which of the properties reflexive, symmetric and transitive are possessed by \(R \).

Section 8.3

8.24 Let \(R \) be an equivalence relation on \(A = \{a, b, c, d, e, f, g\} \) such that \(a R c, c R d, d R g \) and \(b R f \). If there are three distinct equivalence classes resulting from \(R \), then determine these equivalence classes and determine all elements of \(R \).