READ THIS FIRST: This homework assignment is different. After your solutions are graded and returned, you will be asked to make corrections, revise your solutions, and re-submit the entire assignment. Your revised solutions will again be graded. So, effectively, this assignment is worth double points.

The purpose of the "submit, revise, re-submit" process is to provide you with an opportunity to work on improving your mathematical writing. Your writing will be carefully scrutinized and the grade you earn will reflect this.

Directions: Read Chapter 7. Then write a solution to each of the exercises below. Each solution must begin with a complete and accurate restatement of the exercise. These exercises are modified versions of some of the exercises in Chapter 7.

1. Two recursively defined sequences $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ of positive integers have the same recurrence relation: for each $n \geq 3$,

$$
a_{n}=2 a_{n-1}+a_{n-2} \quad \text { and } \quad b_{n}=2 b_{n-1}+b_{n-2} .
$$

The initial values for $\left\{a_{n}\right\}$ are $a_{1}=1$ and $a_{2}=3$, whereas the initial value for $\left\{b_{n}\right\}$ are $b_{1}=1$ and $b_{2}=2$.
Determine whether each of the following conjectures is true or false.
Conjecture A: $a_{n}=2^{n-2} \cdot n+1$ for every integer $n \geq 2$.
Conjecture B: $b_{n}=\frac{1}{2 \sqrt{2}}\left[(1+\sqrt{2})^{n}-(1-\sqrt{2})^{n}\right]$ for every integer $n \geq 2$.
2. Express the statement below in symbols (for example, using the symbols $\exists, \forall, \Longrightarrow$, $\vee, \wedge, \Longleftrightarrow$, and $\sim)$. Then prove the statement.

For every positive real number a and positive rational number b, there exist a real number c and irrational number d such that $a c+b d=1$.
3. Prove or disprove: for every two sets A and B, we have that $(A \cup B)-B=A$.
4. Prove or disprove: for every rational number a / b such that $a, b \in \mathbb{N}$, there exists a rational number c / d such that c and d are positive odd integers and $0<c / d<a / b$.
5. Prove or disprove: there exist positive integers x and y such that $x^{2}-y^{2}=101$.

