Section 6.2

6.24 Prove Bernoulli's Identity: For every real number x > -1 and every positive integer n, $(1 + n)^n > 1 + nn$

$$(1+x)^n \ge 1+nx.$$

- **6.26** Prove that $81 \mid (10^{n+1} 9n 10)$ for every nonnegative integer n.
- **6.30a** Recall for integers $n \ge 2, a, b, c, d$, that if $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$, then $a + c \equiv b + d \pmod{n}$. Use this result and mathematical induction to prove the following: For any 2m integers $a_1, a_2, ..., a_m$ and $b_1, b_2, ..., b_m$ for which $a_i \equiv b_i \pmod{n}$ for $1 \le i \le m$,

$$a_1 + a_2 + \dots + a_m \equiv b_1 + b_2 + \dots + b_m \pmod{n}$$
.