Section 6.2

6.24 Prove Bernoulli's Identity: For every real number $x>-1$ and every positive integer n,

$$
(1+x)^{n} \geq 1+n x .
$$

6.26 Prove that $81 \mid\left(10^{n+1}-9 n-10\right)$ for every nonnegative integer n.
6.30a Recall for integers $n \geq 2, a, b, c, d$, that if $a \equiv b(\bmod n)$ and $c \equiv d(\bmod n)$, then $a+c \equiv b+d(\bmod n)$. Use this result and mathematical induction to prove the following: For any $2 m$ integers $a_{1}, a_{2}, \ldots, a_{m}$ and $b_{1}, b_{2}, \ldots, b_{m}$ for which $a_{i} \equiv b_{i}(\bmod$ $n)$ for $1 \leq i \leq m$,

$$
a_{1}+a_{2}+\ldots a_{m} \equiv b_{1}+b_{2}+\ldots b_{m}(\bmod n) .
$$

