Section 5.1

5.2 Disprove the statement: If \(n \in \{0, 1, 2, 3, 4\} \), then \(2^n + 3^n + n(n-1)(n-2) \) is prime.

5.4 Disprove the statement: Let \(n \in \mathbb{N} \). If \(\frac{n(n+1)}{2} \) is odd, then \(\frac{(n+1)(n+2)}{2} \) is odd.

5.6 Let \(a, b \in \mathbb{Z} \). Disprove the statement: If \(ab \) and \((a + b)^2 \) are of opposite parity, then \(a^2b^2 \) and \(a + ab + b \) are of opposite parity.

5.8 (a) Prove: For positive real numbers \(a \) and \(b \), \((a + b)(1/a + 1/b) \geq 4 \).

(b) Does (a) imply that \((c^2 + d^2)(1/c^2 + 1/d^2) \geq 4^2 \) for every two positive numbers \(c \) and \(d \)?

(c) Does (a) imply that \((c^2 + d^2)(1/c^2 + 1/d^2) \geq 4 \) for every two positive numbers \(c \) and \(d \)?