Section 5.1

5.2 Disprove the statement: If $n \in\{0,1,2,3,4\}$, then $2^{n}+3^{n}+n(n-1)(n-2)$ is prime.
5.4 Disprove the statement: Let $n \in \mathbb{N}$. If $\frac{n(n+1)}{2}$ is odd, then $\frac{(n+1)(n+2)}{2}$ is odd.
5.6 Let $a, b \in \mathbb{Z}$. Disprove the statement: If $a b$ and $(a+b)^{2}$ are of opposite parity, then $a^{2} b^{2}$ and $a+a b+b$ are of opposite parity.
5.8 (a) Prove: For positive real numbers a and $b,(a+b)(1 / a+1 / b) \geq 4$.
(b) Does (a) imply that $\left(c^{2}+d^{2}\right)\left(1 / c^{2}+1 / d^{2}\right) \geq 4^{2}$ for every two positive numbers c and d ?
(c) Does (a) imply that $\left(c^{2}+d^{2}\right)\left(1 / c^{2}+1 / d^{2}\right) \geq 4$ for every two positive numbers c and d ?

