Section 3.2
3.8 (3.6 in second edition) Prove that if $x$ is an odd integer, then $9 x+5$ is even.
3.10 (3.8 in second edition) Prove that if $a$ and $c$ are odd integers, then $a b+b c$ is even for every integer $b$.

## Section 3.3

3.16 (3.12 in second edition) Let $x \in \mathbb{Z}$. Prove that if $7 x+5$ is odd, then $x$ is even.
3.21 (3.18 in second edition) Let $n \in \mathbb{Z}$. Prove that $(n+1)^{2}-1$ is even if and only if $n$ is even.
3.58 (3.40 in second edition) Let $S=\{a, b, c, d\}$ be a set of four distinct integers. Prove that if either (1) for each $x \in S$, the integer $x$ and the sum of any two of the remaining integers of $S$ are of the same parity or (2) for each $x \in S$, the integer $x$ and the sum of any two of the remaining three integers are of opposite parity, then every pair of integers of $S$ is of the same parity.

## Section 3.4

3.50 (3.36 in second edition): Let $x, y \in \mathbb{Z}$. Prove that if $3 x+5 y$ is even, then $x$ and $y$ are of the same parity.
3.A (not in the text): Define $|x|=x$ if $x \geq 0$ and $|x|=-x$ if $x<0$. Prove that $|x+y| \leq|x|+|y|$. Hint: Write a proof using cases.

