Section 1.1

1.2 Let $S=\{-2,-1,0,1,2,3\}$. Describe each of the following sets as $\{x \in S: p(x)\}$, where $p(x)$ is some condition on x.
(a) $A=\{1,2,3\}$
(b) $B=\{0,1,2,3\}$
(c) $C=\{-2,-1\}$
(d) $D=\{-2,2,3\}$.
1.4 Write each of the following sets by listing its elements within braces.
(a) $A=\{n \in \mathbb{Z}:-4<n \leq 4\}$
(b) $B=\left\{n \in \mathbb{Z}: n^{2}<5\right\}$
(c) $C=\left\{n \in \mathbb{N}: n^{3}<100\right\}$
(d) $D=\left\{x \in \mathbb{R}: x^{2}-x=0\right\}$
(e) $E=\left\{x \in \mathbb{R}: x^{2}+1=0\right\}$
1.8 Let $A=\{n \in \mathbb{Z}: 2 \leq|n|<4\}, B=\{x \in \mathbb{Q}: 2<x \leq 4\}$,
$C=\left\{x \in \mathbb{R}: x^{2}-(2+\sqrt{2}) x+2 \sqrt{2}=0\right\}$, and $D=\left\{x \in \mathbb{Q}: x^{2}-(2+\sqrt{2}) x+2 \sqrt{2}=0\right\}$.
(a) Describe the set A by listing its elements.
(b) Give an example of three elements that belong to B but do not belong to A.
(c) Describe the set C by listing its elements.
(d) Describe the set D in another manner.
(e) Determine the cardinality of each of the sets A, C and D.
1.68 Let $S=\{-10,-9, \ldots, 9,10\}$. Describe each of the following sets as $\{x \in S: p(x)\}$, where $p(x)$ is some condition on x.
(a) $A=\{-10,-9, \ldots,-1,1, \ldots, 9,10\}$
(b) $B=\{-10,-9, \ldots,-1,0\}$
(c) $C=\{-5,-4, \ldots, 0,1, \ldots, 7\}$
(d) $D=\{-10,-9, \ldots, 4,6,7, \ldots, 10\}$.

Section 1.2

1.12 Which of the following sets are equal?

$$
\begin{array}{ll}
A=\{n \in \mathbb{Z}:|n|<2\}, & B=\left\{n \in \mathbb{Z}: n^{3}=n\right\}, \quad C=\left\{n \in \mathbb{Z}: n^{2} \leq n\right\}, \\
D=\left\{n \in \mathbb{Z}: n^{2} \leq 1\right\}, & E=\{-1,0,1\} .
\end{array}
$$

1.14 Find $\mathcal{P}(A)$ and $|\mathcal{P}(A)|$ for
(a) $A=\{1,2\}$
(b) $B=\{\emptyset, 1,\{a\}\}$.

Section 1.3

1.22 Let $U=\{1,3, \ldots, 15\}$ be the universal set, $A=\{1,5,9,13\}$ and $B=\{3,9,13\}$. Determine the following:
(a) $A \cup B$
(b) $A \cap B$
(c) $A-B$
(d) $B-A$
(e) \bar{A}
(f) $A \cap \bar{B}$.
1.26 Let U be a universal set and let A and B be two subsets of U. Draw a Venn diagram for each of the following sets:
(a) $\overline{A \cup B}$
(b) $\bar{A} \cap \bar{B}$
(c) $\overline{A \cap B}$
(d) $\bar{A} \cup \bar{B}$.

What can you say about parts (a) and (b)? parts (c) and (d)?
1.30 Let $A=\{x \in \mathbb{R}:|x-1| \leq 2\}, B=\{x \in \mathbb{R}:|x-1| \geq 1\}$ and $C=\{x \in \mathbb{R}:|x+2| \leq 3\}$.
(a) Express A, B and C using interval notation.
(b) Determine each of the following sets using interval notation:

$$
A \cup B, \quad A \cap B, \quad B \cap C, \quad B-C .
$$

1.76 Which of the following sets are equal?
$A=\{n \in \mathbb{Z}:-4 \leq n \leq 4\}, \quad B=\{x \in \mathbb{N}: 2 x+2=0\}, \quad C=\{x \in \mathbb{Z}: 3 x-2=0\}$,
$D=\left\{x \in \mathbb{Z}: x^{3}=4 x\right\}, \quad E=\{-2,0,2\}$.

Section 1.4

1.36 For a real number r, define S_{r} to be the interval $[r-1, r+2]$. Let $A=\{1,3,4\}$. Determine $\bigcup_{\alpha \in A} S_{\alpha}$ and $\bigcap_{\alpha \in A} S_{\alpha}$.
1.38 For a real number r, define $A_{r}=\left\{r^{2}\right\}, B_{r}$ as the closed interval $[r-1, r+1]$, and C_{r} as the interval (r, ∞). For $S=\{1,2,4\}$, determine
(a) $\bigcup_{\alpha \in S} A_{\alpha}$ and $\bigcap_{\alpha \in S} A_{\alpha}$
(b) $\bigcup_{\alpha \in S} B_{\alpha}$ and $\bigcap_{\alpha \in S} B_{\alpha}$
(c) $\bigcup_{\alpha \in S} C_{\alpha}$ and $\bigcap_{\alpha \in S} C_{\alpha}$.

Section 1.5

1.46 Which of the following are partitions of $A=\{a, b, c, d, e, f, g\}$? For each collection of sets that is not a partition of A, explain your answer:
(a) $S_{1}=\{\{a, c, e, g\},\{b, f\},\{d\}\}$
(b) $S_{2}=\{\{a, b, c, d\},\{e, f\}\}$
(c) $S_{3}=\{A\}$
(d) $S_{4}=\{\{a\}, \emptyset,\{b, c, d\},\{e, f, g\}\}$
(e) $S_{5}=\{\{a, c, d\},\{b, g\},\{e\},\{b, f\}\}$.
1.50 Give an example of a partition of \mathbb{N} into three subsets.

Section 1.6

1.59 For $A=\{a, b\}$, determine $A \times \mathcal{P}(A)$.
1.64 For $A=\{1,2\}$ and $B=\{1\}$, determine $\mathcal{P}(A \times B)$.
1.66 - bonus For $A=\{a \in \mathbb{R}:|a| \leq 1\}$ and $B=\{b \in \mathbb{R}:|b|=1\}$, give a geometric description of the points in the $x y$-plane belonging to $(A \times B) \cup(B \times A)$.
1.72 Let $U=\{1,2,3\}$ be the universal set and let $A=\{1,2\}, B=\{2,3\}$ and $C=\{1,3\}$. Determine the following:
(a) $(A \cup B)-(B \cap C)$
(b) \bar{A}
(c) $\overline{B \cup C}$
(d) $A \times B$.

