Prove each statement using mathematical induction. You might need to use strong induction for some of them.

1. $\sum_{x=1}^{n} \frac{1}{\sqrt{x}} \leq 2 \sqrt{n}$.
2. $\left(2^{2 n-1}+1\right)$ is divisible by $3 \forall n \in \mathbb{N}$.
3. The sum of cubes of three consecutive natural numbers is divisible by 9 .
4. (6.42) A sequence $\left\{a_{n}\right\}$ is defined recursively by $a_{1}=1, a_{2}=2$ and $a_{n}=a_{n-1}+2 a_{n-2}$ for $n \geq 3$. Conjecture an explicit formula for a_{n} and verify that your conjecture is correct.
5. (6.44) Consider the sequence $F_{1}, F_{2}, F_{3}, \ldots$, where

$$
F_{1}=1, F_{2}=1, F_{3}=2, F_{4}=3, F_{5}=5, F_{5}=8, \ldots
$$

The terms of this sequence are called Fibonacci numbers.
(a) Define the sequenc of Fibonacci numbers by means of a recurrence relation.
(b) Prove that $2 \mid F_{n}$ if and only if $3 \mid n$.

