Prove each statement using mathematical induction. You might need to use strong induction for some of them.

- 1. $\sum_{x=1}^{n} \frac{1}{\sqrt{x}} \le 2\sqrt{n}.$
- 2. $(2^{2n-1}+1)$ is divisible by $3 \forall n \in \mathbb{N}$.
- 3. The sum of cubes of three consecutive natural numbers is divisible by 9.
- 4. (6.42) A sequence $\{a_n\}$ is defined recursively by $a_1 = 1$, $a_2 = 2$ and $a_n = a_{n-1} + 2a_{n-2}$ for $n \ge 3$. Conjecture an explicit formula for a_n and verify that your conjecture is correct.
- 5. (6.44) Consider the sequence $F_1, F_2, F_3, ...,$ where

$$F_1 = 1, F_2 = 1, F_3 = 2, F_4 = 3, F_5 = 5, F_5 = 8, \dots$$

The terms of this sequence are called **Fibonacci numbers**.

- (a) Define the sequenc of Fibonacci numbers by means of a recurrence relation.
- (b) Prove that $2 | F_n$ if and only if 3 | n.