MTH299 Contribution of Problems

Exam topics

1. Basic structures: sets, lists, functions

—~

a) Sets { }: write all elements, or define by condition
b) Set operations: AUB, ANB, A\B, A€
Lists ( ): Cartesian product Ax B

—~

o

e) Injective function: Vai,as€A: a1#as = f(a1)#f(a2)

f

—_

)
)
d) Functions f: A — B defined by any input-output rule
)
) Surjective function: Vb€ B, Ja€A with f(a) =b

)

—~

g) A, B have same cardinality: there is a bijection f: A — B
(h) A is countable: there is a bijection f: N — A
2. Formal logic
(a) Statements: definitely true or false
Conditional (open) statement P(x): true/false depends on variable x
Logical operations: and, or, not, implies
Truth tables and logical equivalence

Implication P = @ equivalent to: contrapositive not(Q) = not(P);
independent from: converse Q = P; inverse not(P) = not(Q)

Negate implication: not(P = Q) is equivalent to: P and not(Q)
Quantifiers: V for all , 3 there exists;
Negate quantifiers: not(Vx, P(z)) is equivalent to: 3z, not(P(z))
Logical equivalences and set equations

(j) Logic in mathematical language versus everyday language
3. Methods of proof (can be combined)

(a) Direct proof

(b) Proof by cases

(¢) Proof of the contrapositive

(d) Proof by contradiction

(e) Proof by induction (also complete induction)

4. Axioms of a Group (G, *) (All variables below mean elements of G.)
(a) Closure: axb € G.

(b) Associativity: (a*b) *xc=ax* (bx*c)
(c) Identity: There is e with e x a = a and a *x e = a for all a.
(d) Inverses: For each a, there is some b with a xb = ¢ and b*a = e.
Extra axioms
(e) Commutativity: a *xb = b x* a.
(f) Distributivity of times over plus: a-(b+ ¢) = a-b+ a-c and (b + ¢)-a = b-a + c-a.
5. Divisibility of integers (All variables below mean integers.)

(a) Divisibility: alb means b = ac for some ¢ € Z
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(b) Properties of divisibility:
e a|b,c = a|mb+nc for all m,n
e alb and blc = alec.
e alband bla = a = +b.
(¢) Prime and composite
e Test: a is composite = a has prime factor p < /a.
(d) Greatest common divisor ged(a, b); relatively prime means ged(a,b) = 1.
(e) Division Lemma: a = ¢b + r with remainder 0 < r < b.
(f) Euclidean Algorithm computes remainders a > b > ry > -+ > 1, > 0.
e Computes ged(a,b) = 7.
e Finds m,n with ged(a,b) = ma + nb.
(g) Consequences of ged(a,b) = ma + nb
o Find integer solutions (z,y) to equation az + by = ¢, if ged(a, b) | c.
If e|a and e|b, then e| ged(a, b).
Euclid’s Lemma: If ¢|ab and ged(c,a) = 1, then c|b.

e Prime Lemma: If p is prime with p|ab, then p|a or p|b.
e For @ € Z,, find multiplicative inverse b = a~!, i.e ab=1 (mod n).
(h) Fundamental Theorem of Arithmetic
e 1 > 1 is a product of primes uniquely, except for rearranging factors.
e There is a unique list of powers s1, s, S3,... > 0 with: n = 2%13%25%87%411% ...,
6. Equivalence relation = on a set S
(a) Defining properties:
o Reflexive: a =a
e Symmetric: If ¢ = b, then b = a.
e Transitive: f a=band b=c¢, thena=c
(b) Equivalence class [a] = {b € S| b= a}. Following are logically the same:
e a™=)
o ac€[b]
e [a] = [b], the same set
7. Clock arithmetic Z,
(a) Modular equivalence: a =b (mod n) means n|a—b. Class a = [a].
(b) Equivalence class @ = [a]. Z, ={0,1,2,...,n—1}
(¢) Modular addition and multiplication satisfy all usual rules of algebra
(d) Modular division: @ ! = b, where @b = 1, provided ged(a,n) = 1.
(e) In Z, with p prime, every @ # 0 has @ ' € Z,.
8. Limits
(a) Real number axioms: commutative group axioms for +, -; distribuitive law’ axioms of order < .
(b) Completeness: If S C R has upper bound, then lub(S) = sup(S) € R.
(¢) Convergent sequence nh_{r;() anp =4¢: Ve>0,3IN, n> N = |a,—l| <€
(d) Divergent sequence (a,): V¢,3e>0,YN,3In>N with |a,—£| > €.
e) Infinite limit nh_{rolo a, =00: VB,iN, n> N = a, > B.
)

(
(

f) Thm: If (a,) increasing bounded sequence, then (a,) convergent.
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1. (a) Use a multiplication table to find all values a € Z7 for which the equation

has a solution x € Z7. For each such a, list all of the solutions z.

(b) Find all solutions x € Z7 to the equation z? + 2x + 6 = 0.

2. Use quantifiers to express what it means for a sequence (z,)nen to diverge. You cannot use the terms not or converge.

w

. Suppose A, B C R are bounded and non-empty. Show that sup(4A U B) = max {sup(A), sup(B)}.
4. Let A, B be sets, and suppose there is a surjection f: A — B. Prove that there is an injection g : B — A.

5. Use the formal definition of limit to prove the following.

. n?+3
@) Jim 55— =0
4n —5
b —
(b) im o 7
. n®=3n
) B s =t
2 _
(d) lim r = —00

6. For each of the following, determine if ~ defines an equivalence relation on the set S. If it does, prove it and describe

the equivalence classes. If it does not, explain why.

(a) S=RxR. For (a,b) and (c,d) € S, define (a,b) ~ (¢,d) if 3a 4+ 5b = 3¢ + 5d.

(b) S=R. Fora,be S,a~bifa<b.

(¢) S=7Z. Fora,be S,a~bifalb.

(d) S =R xR. For (a,b) and (c,d) € S, define (a,b) ~ (¢,d) if [a] = [¢] and [b] = [d]. Here [x] is the smallest
integer greater than or equal to z.

7. Consider Z,.

(a) Under what conditions on n does every nonzero element have a multiplicative inverse? How about an additive
inverse?

(b) Does every nonzero element have a multiplicative inverse in Za;?

(c) Does 5 have a multiplicative inverse in Z2;? Explain why or why not. If it does, find 5.

(d) Solve the equation 5z — 14 = 19 in Zo;.

3 11/20/13



MTH299 Contribution of Problems

8.

10.

11.

12.

13.

14.

Let A ={a,b,c} and B = {a,x}. List all elements of

(a) AUB

(by AnB

(¢c) A\B

(d) AxB

(e) Power set of A
Let S(n) = {(z,y) € R x R | maz{z,y} = n}. Prove that S(3) N S(5) is the empty set.
Let f: N —= N, given by f(n) =|n —4].

(a) Prove that f is surjective

(b) Prove that f is not injective

Let f: A— B and g : B — A be functions satisfying f(g(z)) = « for all z € B. Prove that f is surjective.

Describe a concrete bijection from N to N x {1,2,3}. Briefly tell why it is injective and surjective.
Make a truth table for not (AV B) = A A B. Find a shorter logically equivalent expression.
Find the negations of the following statements:

(a) (AVB)A(BVC)
(b) A = (BAC)

(¢) Vo 3y (P(z)V (not Q(y)))
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1. (a) Use a multiplication table to find all values a € Z7 for which the equation

has a solution x € Z7. For each such a, list all of the solutions .

2

Solution. We only need to look at the diagonal of the multiplication table for Z7. Then the equation = = @ has a

solution « € Z7 if and only if a € {0,1,2,4}. When a = 0, the only solution is z = 0. When a = T, the solutions are

z=1and x = 6. When a = 2, the solutions are x = 3 and # = 4. When a = 4, the solutions are x = 2 and z = 5.
(b) Find all solutions = € Z7 to the equation x2 + 2z + 6 = 0.
Solution. Adding 2 to both sides, the given equation is equivalent to x? 4+ 2z + 1 = 2. We can factor the left-hand side
to get
(x+1)2=2.
It follows from part (a) that 2 +1 =3 or z + 1 =4, and hence 2 =2 or z = 3.
2. Use quantifiers to express what it means for a sequence (x,)nen to diverge. You cannot use the terms not or converge.
Solution. A sequence (z,,)nen diverges if for every L € R there is some € > 0 such that for all N € N there is some

natural number n > N for which |z, — L| > €. In terms of quantifiers this is

VLERIe>0VYN eNIn> N, |z, — L| > e

3. Suppose A, B C R are bounded and non-empty. Show that sup(A U B) = max {sup(A4), sup(B)}.

Solution. First note that since A and B are both bounded and non-empty, the same is true of AU B and so

sup(A U B) € R exists. It follows immediately from Beck Proposition 8.50 that sup(4 U B) > max {sup(4),sup(B)},
since A and B are both subsets of AU B. We need to prove the reverse inequality. For sake of contradiction, suppose
sup(A U B) > max {sup(A), sup(B)}. Then neither sup(A), nor sup(B) can be an upper bound for AU B. So there is

some z € AU B with > sup(A) and z > sup(B). But x € AU B implies that 2 € A or « € B, so this cannot happen.
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4. Let A, B be finite sets, and suppose there is a surjection f : A — B. Prove that there is an injection g : B — A such

that f og: B — B is the identity function.

Solution. Let b € B, we want to define g(b) € A. Since f is surjective, it follows that f~!(b) is a non-empty set. Let

a € f~1(b) be any element of this set, and declare g(b) = a. We obviously have that f o g is the identity, since

f(g(d)) = f(a) =b for all b € B. To show g is injective, suppose there are b,b’ € B with ¢g(b) = g(¢’). Let a = g(b)

denote this common value. Then by construction of g, we have a € f~1(b) and a € f~1(b'). Applying f to a therefore

gives f(a) =band f(a) =0, and so b=1'.

5. Use the formal definition of limit to prove the following.

(a)

(b)

n?+3
lim ——— =
nLH;O 2’[7,3—4 O

2
Solution. Let ¢ > 0 be given, aribitrary. Define N = max{3, = +2}. Let n > N, n € N be arbitrary. Then,
€

n?+3 n?+3 .
2n3—4_0’ = 552 (since n > 3)
n? + 3n?
< — (We increased the numerator and decreased the denominator,
2n3 — 4n?
keeping in mind 2n3 — 2n? > 0, as n > 2)
2
= 5 (Factor and cancel out common terms)
n —
2
< — >N
< ¥ 3 (n>N)
2
< ¢ (N>=+42)
€
n?+3 n?4+3

Thus, Ve > 0, 3N such that VYn > N with n € N, =0.

— 0’ < &. Thus, indeed lim

2n3 —4 n—oo0 2n3 — 4

in —5
1im =
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1
Solution. Let € > 0 be given, aribitrary. Define N = —. Let n > N, n € N be arbitrary. Then,
€

4n — 5 19
—9|l = i
T ‘ 7 (since n > 0)
19 .
< o (We decreased the denominator,
n
1
< J—
n
< ! (n>N)
= N n =
1
= N = —
. (N =23)
Thus, Ve > 0, 3N such that Vn > N with n € N, M — 2| < e. Thus, indeed lim dn =5 =
2n+7 n—oo 2n 4+ 7

n® —3n

(¢) lim = +o00

Solution. Let M > 0 be given, aribitrary. Define N = v6M + 3. Let n > N, n € N be arbitrary. Then,

3 3
n° —3n n® —3n
>

(since n > 1)

n+5 T n+on
_ n3 —3n
B 6n
B n?—3
N 6
N2 —
> 5 (n>N)
6
= M (N =+V6M +3)
. n3 —3n . . n3—=3n
Thus, VM > 0, AN such that Yn > N with n € N, > M. Thus, indeed lim = 4o00.
n+5 n—oo n—+5
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Solution. Let M < 0 be given, aribitrary. Define N =7 — M. Let n > N, n € N be arbitrary. Then,

2 2
-7 -7
n < i (since n > 7, thus n? —7 > 0)
1—n -n
n?—17Tn . . . .
< (since the denominator is negative and n > 7,
-n
decreasing the numerator, while still keeping it positive )
= T7—n
< 7—-N (n>N)
= M (N=7—-M)

2 _ 2 _
noT < M. Thus, indeed lim noT

1—n n—oo 1 —n

Thus, VM < 0, N such that Vn > N with n € N,

6. For each of the following, determine if ~ defines an equivalence relation on the set S. If it does, prove it and describe

the equivalence classes. If it does not, explain why.

(a) S=R xR. For (a,b) and (¢,d) € S, define (a,b) ~ (¢, d) if 3a + 5b = 3¢ + 5d.

Solution. The relation ~ as defined above is indeed an equivalence relation, since it satisfies reflexivity, symmetry

and transitivity, as shown below.

e Reflexivity: Let (a,b) € S. Then 3a + 5b = 3a + 5b, and therefore (a, b) ~ (a,b).

e Symmetry: Let (a,b), (¢,d) € S such that (a,b) ~ (¢,d). Then 3a 4+ 5b = 3¢ + 5d. This is equivalent to

3¢+ 5d = 3a + 5b, which implies (¢, d) ~ (a,b).

e Transitivity: Let (a,b), (¢,d), (e, f) € S, such that (a,b) ~ (¢,d) and (¢,d) ~ (e, f). Then 3a + 5b = 3¢ + 5d

and 3c + bd = 3e 4+ 5f. By transitivity of equality for real numbers we have 3a 4+ 50 = 3e + 5f, and therefore

(a" b) ~ (6, f)

3
The equivalence classes are the lines 3x + 5y = ¢, i.e. each equivalence class is a line with slope — and the

¢
different equivalence classes have different y—intercepts (given by S)

(b) S=R. Fora,be S,a~bifa <b.
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Solution. The relation defined by a ~ b if a < b is not an equivalence relation, since it does not satisfy reflexivity.

Namely, a ~ a, since a £ a.
(¢) S=7Z. Fora,be S,a~bifalb.

Solution. The relation defined by a ~ b if a | b is not an equivalence relation, since it does not satisfy symmetry.

Namely, a ~ b does not necessarily imply b ~ a. For example, 2 | 8, but 81 2.

(d) S =R xR. For (a,b) and (c,d) € S, define (a,b) ~ (¢,d) if [a] = [¢] and [b] = [d]. Here [x] is the smallest

integer greater than or equal to x.

Solution. The relation ~ as defined above is indeed an equivalence relation, since it satisfies reflexivity, symmetry
and transitivity, as shown below.
e Reflexivity: Let (a,b) € S. Then [a] = [a] and [b] = [b], and therefore (a,b) ~ (a,b).
e Symmetry: Let (a,b), (¢,d) € S such that (a,b) ~ (¢,d). Then [a] = [c] and [b] = [d]. This is equivalent to
[c¢] = [a] and [d] = [b], which implies (¢, d) ~ (a,b).
e Transitivity: Let (a,b), (¢,d), (e, f) € S, such that (a,b) ~ (¢,d) and (¢, d) ~ (e, f). Then [a] = [¢] and
[b] = [d], as well as [¢] = [e] and [d] = [f]. By transitivity of equality for real numbers we have [a] = [e]

and [b] = [f], and therefore (a,b) ~ (e, f).

The equivalence classes are squares in the plane R? with sides parallel to the coordinate axes, in particular, they

are sets of the form (4,7 + 1] x (j,j + 1] (Cartesian product of intervals), where the ordered pair (i, j) € Z2.

7. Consider Z,.

(a) Under what conditions on n does every nonzero element have a multiplicative inverse? How about an additive

inverse?

Solution. Every nonzero element in Z, has a multiplicative inverse if n is prime. Indeed, if n is prime,
ged(n,m) =1 Vm € Z such that 0 < m < n, and therefore by Bezout’s Lemma there exist integers x,y such that
nx +my =1, thus my =1 mod n, i.e. m -j = 1, which implies that m~! = .

Every element in Z,, does have an additive inverse Vn € N.
(b) Does every nonzero element have a multiplicative inverse in Za;?
Solution. No, one can check that 3 and 7 do not have multiplicative inverses in Zs;.
(c) Does 5 have a multiplicative inverse in Z;? Explain why or why not. If it does, find 571
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Solution. One can express ged(5,21) in the form 5z + 21y for some integers z, y by applying the Euclidean

Algorithm, 21 = 4 -5 + 1, therefore 5 - (—4) +21 -1 = 1, thus 5! = 17. (Note that the equivalence classes
Z4=17)

(d) Solve the equation 5z — 14 = 19 in Za;.
Solution. The equation 5z — 14 = 19 is equivalent to 5z = 12, which, using that 57! = 17 yields
r=12-17 = 15.
8. Let A ={a,b,c} and B = {a,z}. List all elements of

(a) AUB
(b) AnB
(c) A\B

(d) AxB

(e) Power set of A

Solution. AUB = {a,b,c,z}, ANB={a}, A\B=1{b,c}, Ax B=1{(a,a),(a,z),(b,a),(b,x),(c,a),(c,x)},
Power set of A is {0, {a}, {b}, {c}, {a,b}, {b,c}, {a,c}, {a,b,c}}.

9. Let S(n) = {(z,y) € R x R | maz{x,y} = n}. Prove that S(3) N S(5) is the empty set.

Solution. Assume the contrary: let (a,b) € S(3) N S(5). Then max{a,b} = 3 and maxz{a,b} =5, but 3 # 5, hence our

assumption leads to a contradiction. Therefore the intersection is empty.

10. Let f: N — N, given by f(n) = |n —4|.

(a) Prove that f is surjective

(b) Prove that f is not injective

Solution. Giveny € N, f(y+4) = |y +4 — 4| = y since y > 0, which shows that f is surjective. f(1) =3 = f(7), hence

f is not injective.

11. Let f: A— B and g : B — A be functions satisfying f(g(x)) = « for all x € B. Prove that f is surjective.
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12.

13.

14.

Solution. First attempt: Assume f is not surjective. Then there is a b € B such that there are no a € A with

f(a) =b. Let ¢ = g(b), then f(c) = f(g(b)) = b by assumption, hence we found a ¢ € A with f(c¢) = b which contradicts
with the assumption.

Second attempt: Given b € B, let a = ¢g(b), and compute f(a) = f(g(b)) = b by assumption. Since b was arbitrary, this

shows that f is surjective.

Describe a concrete bijection from N to N x {1,2,3}. Briefly tell why it is injective and surjective.

Solution. By division lemma, given n, there is a unique ¢ and r with 0 <r < 3 with n =3¢+ r, we could define f(n)

by f(n) = (¢, + 1). Then f has the inverse function given by g(a,b) = 3 -a + b. Check that f(g(a,b)) = (a,b) and
g9(f(n)) =n.

Make a truth table for not (AV B) = A A B. Find a shorter logically equivalent expression.

Solution. Consider all possibilities for simultaneous truth values for A and B:

A| B || not (AVB) | AANB | not (AVB) = not A
T|T F T T
T | F F F T
F|T F F T
F|F T F F

We see that the only time the expression is False is when both A and B are False, hence this expression is logically

equivalent to AV B.

Find the negations of the following statements:

(a) (AVB)A(BVC)

(b) A = (BAC)

(c) Vo Jy (P(x)V (not Q(y)))
Solution. not((AV B) A (BV (C)) =not(AV B) Vnot(BV C) = (notA AnotB) V (not B A notC)
not(A = (BAC)) =not(notAV (BAC)) = AAnot(BAC)=AA (notBV notC')

not(Vx Jy (P(z)V (not Q(y)))) = Iz Vy (notP(x)) A Q(y)
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