0. Ch3.1 A trivial proof and a vacuous proof (Reading assignment)
1. Ch3.2 Direct proofs
2. Ch3.3 Proof by contrapositive
3. Ch3.4 Proof by cases
4. Ch3.5 Proof evaluations (Reading assignment)

Ch 3.2: Direct proofs

A direct proof is a way of showing that a given statement is true or false by using existing lemmas and theorems without making any further assumptions. To prove statements of the form “if P, then Q”,

Assume that the statement P is true and directly derive the conclusion that the statement Q is true.

We can use the following properties of integers without justification.
- The sum (difference, product) of every two integers is an integer.
- The product of two negative integer is positive.
- Every integer is of the form $2m$ or $2m+1$, where $m \in \mathbb{Z}$.

Definition: An integer x is called even (respectively odd) if there is an integer k for which $x = 2k$ (respectively $2k+1$).

Example. If n is an even integer, then $7n + 4$ is also an even integer.

Write a hypothesis and a conclusion first and fill out the body of the proof which is a bridge of logical deductions from the hypothesis to the conclusion.

Proof.
Exercises

1. Let $n \in \mathbb{Z}$. Prove that if $1 - n^2 > 0$, then $3n - 2$ is an even integer.

2. Let $S = \{0, 1, 2\}$ and let $n \in S$. Prove that if $(n + 1)^2(n + 2)^2/4$ is even, then $(n + 2)^2(n + 3)^2/4$ is even.

Proofs Involving Inequalities

(A1) For all real numbers a, b, c, if $a \leq b$ and $b \leq c$ then $a \leq c$.

(A2) For all real numbers a, b, c, if $a \leq b$ then $a + c \leq b + c$.

(A3) For all real numbers a, b, c, if $a \leq b$ and $0 \leq c$ then $ac \leq bc$.

Prove the statements below using A1-A3, together with any basic facts about $equality = .$

(1) For all real numbers a, b, if $0 \leq a$ and $a \leq b$ then $a^2 \leq b^2$.
(2) For all real numbers a, if $a \leq 0$ then $0 \leq -a$.

(3) For all real numbers a, b, if $b \leq a$ and $a \leq 0$, then $a^2 \leq b^2$.

(4) For all real numbers b, $0 \leq b^2$.

(5) For all real numbers a, b, $ab \leq \frac{1}{2}(a^2 + b^2)$. *Hint: Consider $(a - b)^2$.*

(6) For all real numbers a, b, δ, if $\delta \neq 0$ then $ab \leq \frac{1}{2}(\delta^2 a^2 + \delta^{-2}b^2)$.

(7) For all real numbers a, b, $ab = \frac{1}{2}(a^2 + b^2)$ if and only if $a = b$.
Working Backwards

Theorem (Inequality between arithmetic and geometric mean.)

If \(a, b \in \mathbb{R} \) are such that \(a \geq 0 \) and \(b \geq 0 \), then \(\frac{a + b}{2} \geq \sqrt{ab} \)

Scratch work:
1. Start with the inequality you are asked to prove.
2. Simplify it as much as possible until you arrive at a statement that is obviously true.

Formal Proof:
3. In order to write formal proof, now start from the obviously true statement.
4. Use your previous work to guide you on how to arrive at the desired inequality.

Proof:

1. **What is wrong with this proof?**
 (1) Assume \(a = b \).
 (2) Multiplying both sides by \(b \), \(ab = b^2 \).
 (3) Subtracting \(a^2 \) from both sides, \(ab - a^2 = b^2 - a^2 \).
 (4) Factoring \(a(b - a) = (b + a)(b - a) \).
 (5) Dividing by \(b - a \), \(a = b + a \).
 (6) Using (1), \(a = 2a \).
 (7) Dividing by \(a \), \(1 = 2 \).
2. **Circular argument** Prove if \(n^3 \) is even then \(n \) is even.

Proof:

Assume \(n^3 \) is even.
Then \(\exists k \in \mathbb{Z} \) such that \(n^3 = 8k^3 \).
It follows that \(n = (8k^3)^{1/3} = 2k \).
Therefore \(n \) is even.

All statements in the proof are true but is the proof correct?

Ch 3.3: Proof by contrapositive

It is a direct proof but we start with the contrapositive because

\[
P \implies Q \text{ is equivalent to } \sim (Q) \implies \sim (P).
\]

Why do we prove the contrapositive of the implication instead of the original implication?

Example. Prove: If \(n^3 \) is even then \(n \) is even.
Definition: Two integers are said to have the same parity if they are both odd or both even.

Theorem: Let \(x, y \in \mathbb{Z} \). Then \(x \) and \(y \) are of the same parity if and only if \(x + y \) is even.

Proof.

Exercises

1. Prove that if \(5x - 11 \) is an even integer, then \(x \) is an odd integer.

2. Prove that if \(7x + 4 \) is even, then \(5x - 11 \) is odd.
 (This problem is a continuation of the previous question. Of course we can prove this statement directly by using the definition of an even and odd integers)