1. Let \(\sum_{n=1}^{\infty} a_n \) be a given \textbf{convergent} series and let \(c \neq 0 \) be a constant. Prove that
\[
\sum_{n=1}^{\infty} ca_n \text{ converges and } \sum_{n=1}^{\infty} ca_n = c \sum_{n=1}^{\infty} a_n.
\]

2. Let \(\sum_{k=1}^{\infty} a_k \) be an infinite series whose sequence of partial sums is \(\{S_n\} \), where \(S_n = \frac{4n}{3n+5} \).

(a) Does the series \(\sum_{k=1}^{\infty} a_k \) converge? If so, what is its sum? Explain your reasoning.

(b) Find an explicit expression for the \(k^{th} \) term, \(a_k \), of the series.