Definition 1: Given integers a and m, with $m > 0$, $a \mod m$ is defined to be the remainder when a is divided by m.

Definition 2: If two integers x and y have the same remainder when $n \mid x$ and $n \mid y$ for a positive integer n, then x and y are equivalent modulo n (or x equals $y \mod n$).
- We write either “$x \equiv y \mod n$” or “$x \equiv y \mod n$”.
- $x \equiv y \mod n$
: we also read “x is congruent to y modulo (or mod) n.

Example
(1) $12 \mod 5$

(2) $139 \mod 3$

(3) $1142 \equiv x \mod 5$. Find x for $x \in \{x \in \mathbb{Z} | 10 \leq x \leq 15\}$.

Theorem 1. Given integers a, b, and m,

1. $a \equiv b \mod m$ if and only if $a - b = k \cdot m$ for some integer k.
2. If \(a \equiv b \mod m\) and \(c \equiv d \mod m\), then

(1) \(a + c \equiv b + d \mod m\).

(2) \(a \cdot c \equiv b \cdot d \mod m\).

Theorem 2. If \(n\) is a square number, then \(n \mod 4\) is 0 or 1.
Theorem 3. Let $a, b, c \in \mathbb{Z}$ with $c \neq 0$. Then the equation

$$ax \equiv b \mod c$$

has a solution x if and only if $\gcd(a, c) | b$.

Exercise If a function $f : \mathbb{Z} \rightarrow \mathbb{Z}$ is defined by

$$f(a) = a \mod m$$

then is a function f one–to–one? onto? What is its range?

Fermat’s Little Theorem. Let p be a prime number, then $x^p \equiv x \mod p$ for all $x \in \mathbb{Z}$.

Read the proof in the textbook and be prepared to discuss the proof in class.

Using Fermat’s Little Theorem, prove the following.

Corollary. Let p be a prime number and $p \nmid x$. Then $x^{p-1} \equiv 1 \mod p$.