The Division Algorithm (Division Lemma).
Let x and y be non–zero integers with $y > 0$. Then, there exist unique integers q and r such that $x = qy + r$ where $0 \leq r < y$.

1. What are the main stages in the proof?

2. What is the main idea in proving existence of q and r?

3. How are q and r defined?

4. How is uniqueness of q and r proved?

5. Why is there a need for a more general version of the Division Algorithm Theorem?

6. What is the statement of the more general Division Theorem?

7. What is the main idea in its proof?
Theorem (The Euclidean Algorithm). Let \(x \) and \(y \) be integers. Then there exist integers \(q_1, q_2, ..., q_k \) and a descending sequence of positive integers, \(r_1, ..., r_k, r_{k+1} = 0 \), such that:

\[
\begin{align*}
 x &= q_1y + r_1 \\
 y &= q_2r_1 + r_2 \\
 r_1 &= q_3r_2 + r_3 \\
 &\vdots \\
 r_{k-1} &= q_kr_k + 0
\end{align*}
\]

Furthermore, \(\gcd(x, y) = r_k \).

Euclid’s Lemma. Suppose \(n, a, \) and \(b \in \mathbb{N} \). If \(n \mid ab \) and \(\gcd(n, a) = 1 \), then \(n \mid b \).

Proof:

Alternative version of Euclid’s Lemma. If \(p \) is prime and \(p \) divides \(ab \), then \(p \) divides \(a \) or \(p \) divides \(b \).

Proof:
Definition. Two integers are called coprime or relatively prime if their greatest common divisor is 1.

Corollary. If \(n \in \mathbb{N} \) is not a square number, then \(\sqrt{n} \notin \mathbb{Q} \).

Proof:

Definition. A **Diophantine equation** is an equation of the form \(mx + ny = c \), where \(m, n, c \in \mathbb{N} \). We are interested in solutions \((x, y) \in \mathbb{Z}^2\).

Theorem.

1. For all \(m, n \in \mathbb{N} \) there are integer solutions \(x \) and \(y \) to the equation \(mx + ny = c \) if and only if \(\gcd(m, n) \mid c \).

2. Suppose \(x = X \) and \(y = Y \) is a solution to \(mx + ny = c \). Then, for all \(t \in \mathbb{Z} \),

 \[
 x = X + \frac{nt}{\gcd(m, n)} \quad \text{and} \quad y = Y - \frac{mt}{\gcd(m, n)}
 \]

 is also a solution. Furthermore, all solutions are of this form.

Proof: