Replace the definition on page 203 with the definition presented here.

Definition 1. Let \(f \) be defined on an interval \(I \).
1. Then \(f \) is concave up on \(I \) means for each pair \(a < b \in I \), the graph of \(f \) between \(a \) and \(b \) lies below the line segment joining \((a, f(a))\) and \((b, f(b))\).
2. Then \(f \) is concave down on \(I \) means for each pair \(a < b \in I \), the graph of \(f \) between \(a \) and \(b \) lies above the line segment joining \((a, f(a))\) and \((b, f(b))\).

It should be obvious that \(f \) is concave up on an interval \(I \) if and only if \(-f\) is concave down on \(I \). What isn’t so obvious is that a function can be concave up on an interval without being differentiable everywhere on that interval. For example the function defined by

\[
f(x) = \begin{cases}
 x^2 & \text{if } x \leq 0 \\
 (x + 1)^3 - 1 & \text{if } x > 0
\end{cases}
\]

is concave up on \((-\infty, \infty)\) which can easily be seen by sketching its graph. However, \(\lim_{x \to 0^-} \frac{f(x)-0}{x-0} = \frac{d}{dx} x^2 \bigg|_{x=0} = 0 \) while \(\lim_{x \to 0^+} \frac{f(x)-0}{x-0} = \frac{d}{dx} ((x + 1)^3 - 1) \bigg|_{x=0} = 1 \). Consequently \(f'(0) \) doesn’t exist. But if \(f \) is differentiable, then it’s possible to determine whether or not the function is concave up or down from the derivative as the following theorem indicates.

Theorem 1. Let \(f \) be continuous on an interval \(I \) and differentiable on the interior of \(I \).
1. If \(f' \) is increasing on the interior of \(I \), then \(f \) is concave up on \(I \).
2. If \(f' \) is decreasing on the interior of \(I \), then \(f \) is concave down on \(I \).

The next test for concavity is a consequence of Corollary 3 on page 119.

Corollary 1. Let \(f \) be continuous on an interval \(I \) and twice differentiable on the interior of \(I \).
1. If \(f''(x) > 0 \) for each \(x \) in the interior of \(I \), then \(f \) is concave up on \(I \).
2. If \(f''(x) < 0 \) for each \(x \) in the interior of \(I \), then \(f \) is concave down on \(I \).